MRRFGNN: Multi-relation reconstruction and fusion graph neural network for stock crash prediction

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-09-24 DOI:10.1016/j.ins.2024.121507
{"title":"MRRFGNN: Multi-relation reconstruction and fusion graph neural network for stock crash prediction","authors":"","doi":"10.1016/j.ins.2024.121507","DOIUrl":null,"url":null,"abstract":"<div><div>Stock crash risk often propagates through various interconnected relationships between firms, amplifying its impact across financial markets. Few studies predicted the crash risk of one firm in terms of its relevant firms. A common strategy is to adopt graph neural networks (GNNs) with some predefined firm relations. However, many relations remain undetected or evolve over time. Restricting to several predefined relations inevitably makes noise and thus misleads stock crash predictions. In addition, these relationships are not independent during the process of propagating information and interacting with each other. This study proposes the multi-relation reconstruction and fusion graph neural network (MRRFGNN) to predict stock crash risk by capturing complex relations among listed companies. First, the model employs self-supervised learning and contrastive learning to reconstruct and infer implicit relationships between companies. Second, the model incorporates a relation self-attention mechanism to integrate various types of relationships, enabling a more nuanced understanding of the multiple spillover effects. Empirical evidence from a series of experiments demonstrates the superiority of the proposed method, which achieves the best performance with improvements of at least 2.14% in area under the curve (AUC) and 2.64% in Matthews correlation coefficient (MCC), highlighting its potential for practical application in financial markets.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002002552401421X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Stock crash risk often propagates through various interconnected relationships between firms, amplifying its impact across financial markets. Few studies predicted the crash risk of one firm in terms of its relevant firms. A common strategy is to adopt graph neural networks (GNNs) with some predefined firm relations. However, many relations remain undetected or evolve over time. Restricting to several predefined relations inevitably makes noise and thus misleads stock crash predictions. In addition, these relationships are not independent during the process of propagating information and interacting with each other. This study proposes the multi-relation reconstruction and fusion graph neural network (MRRFGNN) to predict stock crash risk by capturing complex relations among listed companies. First, the model employs self-supervised learning and contrastive learning to reconstruct and infer implicit relationships between companies. Second, the model incorporates a relation self-attention mechanism to integrate various types of relationships, enabling a more nuanced understanding of the multiple spillover effects. Empirical evidence from a series of experiments demonstrates the superiority of the proposed method, which achieves the best performance with improvements of at least 2.14% in area under the curve (AUC) and 2.64% in Matthews correlation coefficient (MCC), highlighting its potential for practical application in financial markets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRRFGNN:用于股灾预测的多相关重构与融合图神经网络
股票暴跌风险往往会通过公司之间各种相互关联的关系传播,扩大其对整个金融市场的影响。很少有研究从相关公司的角度预测一家公司的崩盘风险。一种常见的策略是采用具有某些预定义公司关系的图神经网络(GNN)。然而,许多关系仍未被发现或随时间演变。局限于几种预定义的关系不可避免地会产生噪音,从而误导股灾预测。此外,这些关系在信息传播和相互影响的过程中并不是独立的。本研究提出了多关系重构与融合图神经网络(MRRFGNN),通过捕捉上市公司之间的复杂关系来预测股灾风险。首先,该模型采用自监督学习和对比学习来重构和推断公司之间的隐含关系。其次,该模型纳入了一种关系自我关注机制,以整合各种类型的关系,从而更细致地理解多重溢出效应。来自一系列实验的经验证据证明了所提出方法的优越性,该方法达到了最佳性能,曲线下面积(AUC)至少提高了 2.14%,马修斯相关系数(MCC)至少提高了 2.64%,突出了其在金融市场中的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Wavelet structure-texture-aware super-resolution for pedestrian detection HVASR: Enhancing 360-degree video delivery with viewport-aware super resolution KNEG-CL: Unveiling data patterns using a k-nearest neighbor evolutionary graph for efficient clustering Fréchet and Gateaux gH-differentiability for interval valued functions of multiple variables Detecting fuzzy-rough conditional anomalies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1