{"title":"LCMA-Net: A light cross-modal attention network for streamer re-identification in live video","authors":"Jiacheng Yao, Jing Zhang, Hui Zhang, Li Zhuo","doi":"10.1016/j.cviu.2024.104183","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid expansion of the we-media industry, streamers have increasingly incorporated inappropriate content into live videos to attract traffic and pursue interests. Blacklisted streamers often forge their identities or switch platforms to continue streaming, causing significant harm to the online environment. Consequently, streamer re-identification (re-ID) has become of paramount importance. Streamer biometrics in live videos exhibit multimodal characteristics, including voiceprints, faces, and spatiotemporal information, which complement each other. Therefore, we propose a light cross-modal attention network (LCMA-Net) for streamer re-ID in live videos. First, the voiceprint, face, and spatiotemporal features of the streamer are extracted by RawNet-SA, <span><math><mi>Π</mi></math></span>-Net, and STDA-ResNeXt3D, respectively. We then design a light cross-modal pooling attention (LCMPA) module, which, combined with a multilayer perceptron (MLP), aligns and concatenates different modality features into multimodal features within the LCMA-Net. Finally, the streamer is re-identified by measuring the similarity between these multimodal features. Five experiments were conducted on the StreamerReID dataset, and the results demonstrated that the proposed method achieved competitive performance. The dataset and code are available at <span><span>https://github.com/BJUT-AIVBD/LCMA-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104183"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002649","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid expansion of the we-media industry, streamers have increasingly incorporated inappropriate content into live videos to attract traffic and pursue interests. Blacklisted streamers often forge their identities or switch platforms to continue streaming, causing significant harm to the online environment. Consequently, streamer re-identification (re-ID) has become of paramount importance. Streamer biometrics in live videos exhibit multimodal characteristics, including voiceprints, faces, and spatiotemporal information, which complement each other. Therefore, we propose a light cross-modal attention network (LCMA-Net) for streamer re-ID in live videos. First, the voiceprint, face, and spatiotemporal features of the streamer are extracted by RawNet-SA, -Net, and STDA-ResNeXt3D, respectively. We then design a light cross-modal pooling attention (LCMPA) module, which, combined with a multilayer perceptron (MLP), aligns and concatenates different modality features into multimodal features within the LCMA-Net. Finally, the streamer is re-identified by measuring the similarity between these multimodal features. Five experiments were conducted on the StreamerReID dataset, and the results demonstrated that the proposed method achieved competitive performance. The dataset and code are available at https://github.com/BJUT-AIVBD/LCMA-Net.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems