Thermal performance of nanofluid natural convection magneto-hydrodynamics within a chamber equipped with a hot block

Q1 Chemical Engineering International Journal of Thermofluids Pub Date : 2024-09-20 DOI:10.1016/j.ijft.2024.100873
{"title":"Thermal performance of nanofluid natural convection magneto-hydrodynamics within a chamber equipped with a hot block","authors":"","doi":"10.1016/j.ijft.2024.100873","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, flow and free convection thermal performance within a chamber in the presence of a permanent magnetic field are simulated. Boussinesq approximation and the Lorentz force equation are used for the density variation in free convection, and the magnetic field, respectively. The steady-state, two-dimensional, and incompressible governing equations are simulated using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE). The present study is simulated for different Rayleigh numbers (Ra) corresponding to the situation where the conduction mechanism was predominant (<em>Ra</em>  =  100) and the convection heat transfer was predominant (<em>Ra</em>  =  10<sup>5</sup>). Also, different intensities of the magnetic field (0 ≤ <em>Ha</em>  ≤ 40) and different directions of the magnetic field along with the effects of three different nanoparticles Ag, Cu, and <em>Al</em><sub>2</sub><em>O</em><sub>3</sub> are given. The present study showed that in the case of the dominant convection mechanism, the presence of the magnetohydrodynamics (MHD) condition decreases the Nusselt number (Nu). However, if the conduction is predominant, the applied magnetic field improves the average Nu number. The optimum state for the magnetic field strength was found in the low Rayleigh number. The presence of nanoparticles also intensifies the magnetic field effects. In the high Rayleigh number, the heat transfer rate reduces by 13.5% with the increase of the Hartmann number.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724003148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, flow and free convection thermal performance within a chamber in the presence of a permanent magnetic field are simulated. Boussinesq approximation and the Lorentz force equation are used for the density variation in free convection, and the magnetic field, respectively. The steady-state, two-dimensional, and incompressible governing equations are simulated using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE). The present study is simulated for different Rayleigh numbers (Ra) corresponding to the situation where the conduction mechanism was predominant (Ra  =  100) and the convection heat transfer was predominant (Ra  =  105). Also, different intensities of the magnetic field (0 ≤ Ha  ≤ 40) and different directions of the magnetic field along with the effects of three different nanoparticles Ag, Cu, and Al2O3 are given. The present study showed that in the case of the dominant convection mechanism, the presence of the magnetohydrodynamics (MHD) condition decreases the Nusselt number (Nu). However, if the conduction is predominant, the applied magnetic field improves the average Nu number. The optimum state for the magnetic field strength was found in the low Rayleigh number. The presence of nanoparticles also intensifies the magnetic field effects. In the high Rayleigh number, the heat transfer rate reduces by 13.5% with the increase of the Hartmann number.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
装有热块的腔体内纳米流体自然对流磁流体力学的热性能
本研究模拟了存在永久磁场的腔体内的流动和自由对流热性能。自由对流中的密度变化和磁场分别采用了布森斯克近似和洛伦兹力方程。使用压力关联方程半隐式方法(SIMPLE)模拟了稳态、二维和不可压缩的控制方程。本研究针对不同的瑞利数(Ra)进行了模拟,分别对应传导机制占主导地位(Ra = 100)和对流传热占主导地位(Ra = 105)的情况。此外,还给出了不同的磁场强度(0 ≤ Ha ≤ 40)和不同的磁场方向,以及 Ag、Cu 和 Al2O3 三种不同纳米粒子的影响。本研究表明,在对流机制占主导地位的情况下,磁流体力学(MHD)条件的存在会降低努塞尔特数(Nu)。然而,如果传导占主导地位,则外加磁场会提高平均 Nu 数。磁场强度的最佳状态是雷利数较低时。纳米粒子的存在也会增强磁场效应。在高雷利数下,随着哈特曼数的增加,传热率降低了 13.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
期刊最新文献
Optimized thermal pretreatment for lignocellulosic biomass of pigeon pea stalks to augment quality and quantity of biogas production Comparative numerical study on the effect of fin orientation on the photovoltaic/thermal (PV/T) system performance Thermodynamic and environmental comparative analysis of a dual loop ORC and Kalina as bottoming cycle of a solar Brayton sCO2 Simulation of flow dynamics and heat transfer behavior of nanofluid in microchannel with rough surfaces Thermo-hydraulic performance of concentric tube heat exchangers with turbulent flow: Predictive correlations and iterative methods for pumping power and heat transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1