Global error bound estimates algorithm for an R0-type generalized LCP over polyhedral cone and its applications

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-21 DOI:10.1016/j.cam.2024.116288
Hongchun Sun , Yiju Wang , Jiakang Du
{"title":"Global error bound estimates algorithm for an R0-type generalized LCP over polyhedral cone and its applications","authors":"Hongchun Sun ,&nbsp;Yiju Wang ,&nbsp;Jiakang Du","doi":"10.1016/j.cam.2024.116288","DOIUrl":null,"url":null,"abstract":"<div><div>For the generalized linear complementarity problem over a polyhedral cone (GLCP), by making a characterization of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-matrix, we derive a necessary and sufficient condition for the boundedness of the level set of the natural residual function of the GLCP, and based on this, we establish a global error bound for the <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo></mrow></math></span>type GLCP. Compared with the existing results, the requirements imposed on the GLCP such as the non-degenerateness of the solution and the full-column rank of the underlying matrix are removed. As an application of the obtained results, we show the global linear convergence of the matrix splitting algorithm for the GLCP. Some numerical experiments are provided to show the validity of the obtained results.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

For the generalized linear complementarity problem over a polyhedral cone (GLCP), by making a characterization of R0-matrix, we derive a necessary and sufficient condition for the boundedness of the level set of the natural residual function of the GLCP, and based on this, we establish a global error bound for the R0type GLCP. Compared with the existing results, the requirements imposed on the GLCP such as the non-degenerateness of the solution and the full-column rank of the underlying matrix are removed. As an application of the obtained results, we show the global linear convergence of the matrix splitting algorithm for the GLCP. Some numerical experiments are provided to show the validity of the obtained results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多面体锥体上 R0 型广义 LCP 的全局误差边界估计算法及其应用
对于多面体圆锥上的广义线性互补问题(GLCP),通过对 R0 矩阵进行表征,我们推导出了 GLCP 自然残差函数水平集有界性的必要条件和充分条件,并在此基础上建立了 R0 型 GLCP 的全局误差约束。与现有结果相比,取消了对 GLCP 的要求,如解的非退化性和底层矩阵的全列秩。作为所得结果的应用,我们展示了 GLCP 矩阵分割算法的全局线性收敛性。我们还提供了一些数值实验来证明所获结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1