{"title":"A comprehensive study of a new cylindrical flexible Miura-Ori origami: Kinematics, FEA, and fatigue assessments","authors":"Hadi Ebrahimi Fakhari , Habib Eslami , Mojtaba Moshtaghzadeh , Pezhman Mardanpour","doi":"10.1016/j.ast.2024.109620","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduced a new cylindrical flexible structure incorporating a multi-story origami based on the Miura-Ori pattern and mathematized kinematics. Our experiments validated the finite element simulations as well as the feasibility of the kinematics. We developed a fabrication technique and made a sample to study the feasibility and applicability of the designed structure. Subsequently, we set up a finite element simulation that mirrors the prepared sample. A series of axial folding experiments were carried out to validate the FEM simulation. We have also derived kinematic formulations relating the structure's height, folding angle, and radius. To model and analyze the folding and unfolding mechanisms of this innovative structure, we employed Finite Element Analysis (FEA). In our study, we investigate four main geometric parameters that significantly influence our design's characteristics: crease thickness, number of stories, crease width, and number of vertexes in one story. By varying these design parameters, we systematically examine their impact on key structural attributes such as fatigue life, folding force, and energy absorption. Our findings indicate that reduced crease thickness correlates with lower von-Mises stress and strain, significantly extending the origami design's lifespan. Through our analysis, we identify specific parameter values that maximize fatigue life, ensuring the structural integrity and longevity of the design. Our findings show that increasing the crease width extends the fatigue life dramatically. In conclusion, we summarize the influence of each design parameter on the structure's behavioral characteristics in a comprehensive approach.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109620"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007491","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduced a new cylindrical flexible structure incorporating a multi-story origami based on the Miura-Ori pattern and mathematized kinematics. Our experiments validated the finite element simulations as well as the feasibility of the kinematics. We developed a fabrication technique and made a sample to study the feasibility and applicability of the designed structure. Subsequently, we set up a finite element simulation that mirrors the prepared sample. A series of axial folding experiments were carried out to validate the FEM simulation. We have also derived kinematic formulations relating the structure's height, folding angle, and radius. To model and analyze the folding and unfolding mechanisms of this innovative structure, we employed Finite Element Analysis (FEA). In our study, we investigate four main geometric parameters that significantly influence our design's characteristics: crease thickness, number of stories, crease width, and number of vertexes in one story. By varying these design parameters, we systematically examine their impact on key structural attributes such as fatigue life, folding force, and energy absorption. Our findings indicate that reduced crease thickness correlates with lower von-Mises stress and strain, significantly extending the origami design's lifespan. Through our analysis, we identify specific parameter values that maximize fatigue life, ensuring the structural integrity and longevity of the design. Our findings show that increasing the crease width extends the fatigue life dramatically. In conclusion, we summarize the influence of each design parameter on the structure's behavioral characteristics in a comprehensive approach.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.