Experimental study on endwall film cooling performance of an adjustable guide vane

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-10-01 DOI:10.1016/j.ijthermalsci.2024.109440
Yifei Yan , Liming Song , Yunjia Yao , Zhi Tao , Jun Li
{"title":"Experimental study on endwall film cooling performance of an adjustable guide vane","authors":"Yifei Yan ,&nbsp;Liming Song ,&nbsp;Yunjia Yao ,&nbsp;Zhi Tao ,&nbsp;Jun Li","doi":"10.1016/j.ijthermalsci.2024.109440","DOIUrl":null,"url":null,"abstract":"<div><div>Variable-geometry turbines are a crucial technology in advanced variable cycle engines, with the inevitable endwall clearance caused by blade rotation being a key concern. While current research primarily focuses on its influence on aerodynamics performance, there is a notable dearth of studies on endwall cooling behaviors. To this end, this article establishes an experimental platform to assess the endwall film cooling characteristics of adjustable guide vanes. Firstly, the film cooling characteristics were compared between traditional fixed guide vanes and adjustable guide vanes with a 0° turning angle under different MFRs (0.5 %, 1.0 %, 1.5 %). Results demonstrate that the adjustable guide vane configuration expands the film coverage on the endwall near the leading and trailing edges under the MFR investigated. This is because the leakage flow caused by clearances transports some coolant into these gaps, effectively suppressing them on the endwall surface, thereby creating a beneficial cooling coverage effect. Subsequently, the influence of turning angles (0°, −1.5°, −3°) on the film cooling characteristics of adjustable guide vanes was further investigated. Results indicate that turning angle exerts minor influences on cooling effectiveness near the LE clearance. However, a slight enhancement in cooling effectiveness near the TE clearance is observed with decreasing turning angles.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109440"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005623","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Variable-geometry turbines are a crucial technology in advanced variable cycle engines, with the inevitable endwall clearance caused by blade rotation being a key concern. While current research primarily focuses on its influence on aerodynamics performance, there is a notable dearth of studies on endwall cooling behaviors. To this end, this article establishes an experimental platform to assess the endwall film cooling characteristics of adjustable guide vanes. Firstly, the film cooling characteristics were compared between traditional fixed guide vanes and adjustable guide vanes with a 0° turning angle under different MFRs (0.5 %, 1.0 %, 1.5 %). Results demonstrate that the adjustable guide vane configuration expands the film coverage on the endwall near the leading and trailing edges under the MFR investigated. This is because the leakage flow caused by clearances transports some coolant into these gaps, effectively suppressing them on the endwall surface, thereby creating a beneficial cooling coverage effect. Subsequently, the influence of turning angles (0°, −1.5°, −3°) on the film cooling characteristics of adjustable guide vanes was further investigated. Results indicate that turning angle exerts minor influences on cooling effectiveness near the LE clearance. However, a slight enhancement in cooling effectiveness near the TE clearance is observed with decreasing turning angles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可调导叶的端壁薄膜冷却性能实验研究
变几何涡轮机是先进变循环发动机的关键技术,叶片旋转造成的不可避免的端壁间隙是一个关键问题。目前的研究主要集中在其对空气动力学性能的影响上,而对端壁冷却行为的研究却明显不足。为此,本文建立了一个实验平台来评估可调导叶的端壁薄膜冷却特性。首先,在不同的 MFR(0.5%、1.0%、1.5%)条件下,比较了传统固定导叶和转角为 0° 的可调导叶的薄膜冷却特性。结果表明,在所研究的 MFR 条件下,可调导叶配置扩大了前缘和后缘附近端壁的薄膜覆盖范围。这是因为间隙引起的泄漏流将一些冷却剂输送到这些间隙中,有效地抑制了端壁表面的冷却剂,从而产生了有利的冷却覆盖效果。随后,进一步研究了转角(0°、-1.5°、-3°)对可调导叶薄膜冷却特性的影响。结果表明,在 LE 间隙附近,转角对冷却效果的影响较小。然而,随着转角的减小,TE 间隙附近的冷却效果略有增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Convective-radiative heat exchange in a cube with a flat heated element under the rotation effect around coordinate axis “Heat transfer analysis in 10 PPI copper metal foam using graphene-water nanofluid: Experimental study” Elucidating effects of form factors on thermal and aging behavior of cylindrical lithium-ion batteries Documenting weld pool behavior differences in variable-gap laser self-melting and wire-filling welding of titanium alloys Numerical study on vibration heat transfer enhancement of multi-configured blunt-headed cylinder with fin device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1