How can we predict transportation stock prices using artificial intelligence? Findings from experiments with Long Short-Term Memory based algorithms

Dinar Ajeng Kristiyanti, Willibrordus Bayu Nova Pramudya, Samuel Ady Sanjaya
{"title":"How can we predict transportation stock prices using artificial intelligence? Findings from experiments with Long Short-Term Memory based algorithms","authors":"Dinar Ajeng Kristiyanti,&nbsp;Willibrordus Bayu Nova Pramudya,&nbsp;Samuel Ady Sanjaya","doi":"10.1016/j.jjimei.2024.100293","DOIUrl":null,"url":null,"abstract":"<div><div>Inflation growth in Indonesia and other countries impacts the currency value and investors' purchasing power, particularly in the transportation sector. This research explores the impact of inflation growth in Indonesia and comparable nations on currency valuation and the purchasing power of investors, with a focus on the transportation sector. Data collection was carried out from April to October 2023 by scraping stock data from several transportation stocks such as: AKSI.JK, CMPP.JK, SAFE.JK, SMDR.JK, TMAS.JK, and WEHA. The research primarily aims to forecast stock prices in Indonesia's transportation sector, utilizing data mining techniques within the Cross Industry Standard Process for Data Mining (CRISP-DM) framework, which includes stages such as business understanding, data preparation, modeling, evaluation, and deployment. It employs the Long Short-Term Memory (LSTM) algorithm, assessing different hyperparameter activation functions (linear, ReLU, sigmoid, tanh) and optimizers (ADAM, ADAGRAD, NADAM, RMSPROP, ADADELTA, SGD, ADAMAX) to refine prediction accuracy. Findings demonstrate the ReLU activation function and ADAM optimizer's effectiveness, highlighted by evaluation metrics such as Mean Absolute Error (MAE) of 0.0092918, Mean Absolute Percentage Error (MAPE) of 0.06422, and R-Squared of 96 %. The study notably identifies significant growth in Temas (TMAS.JK) stock from April to October 2023, surpassing other sector stocks. Additionally, a web-based application for predicting transportation stock prices has been developed, facilitating user inputs like ticker, activation-optimizer choice, and date range.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 2","pages":"Article 100293"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266709682400082X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inflation growth in Indonesia and other countries impacts the currency value and investors' purchasing power, particularly in the transportation sector. This research explores the impact of inflation growth in Indonesia and comparable nations on currency valuation and the purchasing power of investors, with a focus on the transportation sector. Data collection was carried out from April to October 2023 by scraping stock data from several transportation stocks such as: AKSI.JK, CMPP.JK, SAFE.JK, SMDR.JK, TMAS.JK, and WEHA. The research primarily aims to forecast stock prices in Indonesia's transportation sector, utilizing data mining techniques within the Cross Industry Standard Process for Data Mining (CRISP-DM) framework, which includes stages such as business understanding, data preparation, modeling, evaluation, and deployment. It employs the Long Short-Term Memory (LSTM) algorithm, assessing different hyperparameter activation functions (linear, ReLU, sigmoid, tanh) and optimizers (ADAM, ADAGRAD, NADAM, RMSPROP, ADADELTA, SGD, ADAMAX) to refine prediction accuracy. Findings demonstrate the ReLU activation function and ADAM optimizer's effectiveness, highlighted by evaluation metrics such as Mean Absolute Error (MAE) of 0.0092918, Mean Absolute Percentage Error (MAPE) of 0.06422, and R-Squared of 96 %. The study notably identifies significant growth in Temas (TMAS.JK) stock from April to October 2023, surpassing other sector stocks. Additionally, a web-based application for predicting transportation stock prices has been developed, facilitating user inputs like ticker, activation-optimizer choice, and date range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
如何利用人工智能预测运输股价?基于长短期记忆算法的实验结果
印尼和其他国家的通胀增长会影响货币价值和投资者的购买力,尤其是在交通运输行业。本研究探讨了印尼和可比国家的通胀增长对货币估值和投资者购买力的影响,重点关注交通运输行业。数据收集工作于 2023 年 4 月至 10 月期间进行,从多只运输股中获取股票数据,如AKSI.JK、CMPP.JK、SAFE.JK、SMDR.JK、TMAS.JK 和 WEHA。该研究的主要目的是在跨行业数据挖掘标准流程(CRISP-DM)框架内利用数据挖掘技术预测印尼运输行业的股票价格,该框架包括业务理解、数据准备、建模、评估和部署等阶段。它采用了长短期记忆(LSTM)算法,评估了不同的超参数激活函数(线性、ReLU、sigmoid、tanh)和优化器(ADAM、ADAGRAD、NADAM、RMSPROP、ADADELTA、SGD、ADAMAX),以提高预测准确性。研究结果证明了 ReLU 激活函数和 ADAM 优化器的有效性,平均绝对误差 (MAE) 为 0.0092918,平均绝对百分比误差 (MAPE) 为 0.06422,R 平方为 96 %。研究发现,淡马锡(TMAS.JK)股票在 2023 年 4 月至 10 月期间增长显著,超过了其他行业股票。此外,还开发了一个用于预测运输股价格的网络应用程序,方便用户输入股票代码、激活优化器选择和日期范围等信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
期刊最新文献
How digital technologies and AI contribute to achieving the health-related SDGs Monitoring semantic relatedness and revealing fairness and biases through trend tests Fraud detection skills of Thai Gen Z accountants: The roles of digital competency, data science literacy and diagnostic skills A machine learning algorithm for personalized healthy and sustainable grocery product recommendations User-driven technology in NGOs—A computationally intensive theory approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1