Plastic deformations in NiCoFe medium-entropy alloy investigated using nanoindentation simulations

IF 4.4 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Results in Physics Pub Date : 2024-10-01 DOI:10.1016/j.rinp.2024.107989
Qinqin Xu , F. Javier Domı́nguez-Gutiérrez , Wenyi Huo , Stefanos Papanikolaou
{"title":"Plastic deformations in NiCoFe medium-entropy alloy investigated using nanoindentation simulations","authors":"Qinqin Xu ,&nbsp;F. Javier Domı́nguez-Gutiérrez ,&nbsp;Wenyi Huo ,&nbsp;Stefanos Papanikolaou","doi":"10.1016/j.rinp.2024.107989","DOIUrl":null,"url":null,"abstract":"<div><div>Medium-entropy alloys (MEA) have potential load-bearing applications as high-performance structural materials. In this work, the plastic deformations in NiCoFe MEAs were investigated using nanoindentation atomistic simulations. The nanoindentation responses of three typical orientations of NiCoFe single-crystals were investigated, i.e., [001], [011] and [111]. The results show that, during nanoindentation, Shockley partials on (111) slip planes remarkably affect dislocation-related activities including nucleation, gliding, and interactions. The form of atomic pile-ups is highly non-uniform and strongly asymmetrical due to the presence of multi-principal elements. The dislocation nucleation mechanism of the alloys during nanoindentation is proposed in detail. We find evidence that a hexagonal close-packed phase is formed from the face-centered cubic structure during nanoindentation.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"65 ","pages":"Article 107989"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379724006740","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Medium-entropy alloys (MEA) have potential load-bearing applications as high-performance structural materials. In this work, the plastic deformations in NiCoFe MEAs were investigated using nanoindentation atomistic simulations. The nanoindentation responses of three typical orientations of NiCoFe single-crystals were investigated, i.e., [001], [011] and [111]. The results show that, during nanoindentation, Shockley partials on (111) slip planes remarkably affect dislocation-related activities including nucleation, gliding, and interactions. The form of atomic pile-ups is highly non-uniform and strongly asymmetrical due to the presence of multi-principal elements. The dislocation nucleation mechanism of the alloys during nanoindentation is proposed in detail. We find evidence that a hexagonal close-packed phase is formed from the face-centered cubic structure during nanoindentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纳米压痕模拟研究镍钴铁中熵合金的塑性变形
中熵合金(MEA)作为高性能结构材料具有潜在的承载应用。本研究利用纳米压痕原子模拟研究了镍钴铁合金的塑性变形。研究了镍钴铁单晶的三种典型取向(即[001]、[011]和[111])的纳米压痕响应。结果表明,在纳米压痕过程中,(111) 滑移面上的肖克利偏置会显著影响差排的相关活动,包括成核、滑行和相互作用。由于多主元素的存在,原子堆积的形式高度不均匀且极不对称。我们详细提出了合金在纳米压痕过程中的位错成核机制。我们发现有证据表明,在纳米压痕过程中,面心立方结构形成了六方紧密堆积相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
期刊最新文献
A filtering polarization conversion electromagnetic surface for simultaneous RCS reduction and transmission Computational analysis of heat transfer for hybrid nanofluid flow within a wavy lid-driven cavity with entropy generation and non-uniform heating Convergent laser beam shapes: Unveiling the dynamics of Laser-induced elastic waves in composite materials Exploring structural and electronic properties of topological insulator/graphene nano-heterostructures Enhanced thermoelectric properties of bismuth telluride via Ultra-Low thermal conductivity BOSC compound addition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1