{"title":"Buffeting performance of long-span bridges with different span affected by parametric typhoon wind","authors":"Lin Zhao , Zilong Wang , Weile Chen , Wei Cui","doi":"10.1016/j.jweia.2024.105903","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, typhoon-related performance of long span bridges usually focus on a specific wind record such as wind speed and turbulence intensity during a full typhoon, however, the inter-correlation among wind characteristic parameters under typhoon wind climate is ignored. The existing investigation about structural responses during typhoon attacks are still limited at case-study analysis, and hardly provide a generalized framework to evaluate the structural performance especially for typhoon landing whole process. This study utilizes the measured wind speeds of the strong typhoon \"Hagupit\" to establish a unified typhoon parametric model, during which the correlation of typhoon wind parameters including angle of attack (AoA), turbulence intensity, integral length scale and mean wind speed were taken into consideration. The measured typhoon process charactered with center-through effect with M-type average wind speed curve. Furthermore, the structural performance of long-span bridges with different spans from 1500 m to 2500 m main span was systematically studied. The aerodynamic parameters of the bridge deck section, including the aerostatic coefficients, flutter derivatives at different AoAs, and aerodynamic admittance under different oncoming flow conditions were identified through wind tunnel tests. Finally, the wind-induced buffeting performance was calculated by the buffeting frequency domain algorithm, showing various structural wind effect characteristics during the typhoon landing whole process. The maximal buffeting response is not necessarily related with the wind speed, and other wind characteristics especially turbulence intensity and AoA, etc. also affect on the results.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"254 ","pages":"Article 105903"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002666","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, typhoon-related performance of long span bridges usually focus on a specific wind record such as wind speed and turbulence intensity during a full typhoon, however, the inter-correlation among wind characteristic parameters under typhoon wind climate is ignored. The existing investigation about structural responses during typhoon attacks are still limited at case-study analysis, and hardly provide a generalized framework to evaluate the structural performance especially for typhoon landing whole process. This study utilizes the measured wind speeds of the strong typhoon "Hagupit" to establish a unified typhoon parametric model, during which the correlation of typhoon wind parameters including angle of attack (AoA), turbulence intensity, integral length scale and mean wind speed were taken into consideration. The measured typhoon process charactered with center-through effect with M-type average wind speed curve. Furthermore, the structural performance of long-span bridges with different spans from 1500 m to 2500 m main span was systematically studied. The aerodynamic parameters of the bridge deck section, including the aerostatic coefficients, flutter derivatives at different AoAs, and aerodynamic admittance under different oncoming flow conditions were identified through wind tunnel tests. Finally, the wind-induced buffeting performance was calculated by the buffeting frequency domain algorithm, showing various structural wind effect characteristics during the typhoon landing whole process. The maximal buffeting response is not necessarily related with the wind speed, and other wind characteristics especially turbulence intensity and AoA, etc. also affect on the results.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.