Feng Liu , Mengjie Wei , Haibo Yang , Wenzhe Yang , Dawei Chen
{"title":"Numerical simulation and experimental study of the effects of retaining block structures on wavefront steepening in rail tunnels","authors":"Feng Liu , Mengjie Wei , Haibo Yang , Wenzhe Yang , Dawei Chen","doi":"10.1016/j.jweia.2024.105956","DOIUrl":null,"url":null,"abstract":"<div><div>The entry of a high-speed train into a tunnel triggers severe micro pressure wave (MPW), posing a major obstacle to the fast and environmentally friendly operation of trains. The installation of a retaining block structure in the tunnel can alter the propagation process of the compression waves, thereby mitigating the effects of MPWs. In this research, a two-dimensional-axisymmetric retaining block is taken as the research object. Based on CFD and an experimental device for generating initial wavefronts, we investigate the influence of the retaining block's radial, axial lengths and the installation location, on the mitigation of wavefront steepening. It is found that the results of numerical simulations compare favourably with those of the experimental device. In mitigating the steepening of the wavefront, there is a critical value for retaining block's axial length which is about 1/4 of the length of S-shaped initial wavefront, and the retaining block is more effective when the wavefront pressure gradient is higher. This implies that when considering the inertial effect of the wavefront inside medium to long tunnels, the retaining block should be placed as close as possible to the tunnel exit to minimize the maximum pressure gradient of the wavefront. The results of this paper may provide a new approach for improving the evolution of pressure waves in tunnels.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"255 ","pages":"Article 105956"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524003192","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The entry of a high-speed train into a tunnel triggers severe micro pressure wave (MPW), posing a major obstacle to the fast and environmentally friendly operation of trains. The installation of a retaining block structure in the tunnel can alter the propagation process of the compression waves, thereby mitigating the effects of MPWs. In this research, a two-dimensional-axisymmetric retaining block is taken as the research object. Based on CFD and an experimental device for generating initial wavefronts, we investigate the influence of the retaining block's radial, axial lengths and the installation location, on the mitigation of wavefront steepening. It is found that the results of numerical simulations compare favourably with those of the experimental device. In mitigating the steepening of the wavefront, there is a critical value for retaining block's axial length which is about 1/4 of the length of S-shaped initial wavefront, and the retaining block is more effective when the wavefront pressure gradient is higher. This implies that when considering the inertial effect of the wavefront inside medium to long tunnels, the retaining block should be placed as close as possible to the tunnel exit to minimize the maximum pressure gradient of the wavefront. The results of this paper may provide a new approach for improving the evolution of pressure waves in tunnels.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.