The deformation mechanism of low symmetric Ti–Pt intermetallic compounds containing high density of planar defects

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2024-09-25 DOI:10.1016/j.mtsust.2024.100995
{"title":"The deformation mechanism of low symmetric Ti–Pt intermetallic compounds containing high density of planar defects","authors":"","doi":"10.1016/j.mtsust.2024.100995","DOIUrl":null,"url":null,"abstract":"<div><div>Intermetallic compounds typically exhibit limited plastic deformation capacity due to challenges in activating dislocation slip and deformation twinning, coupled with a lack of alternative deformation mechanisms. Ti–Pt alloys are a prevalent type of intermetallic compound utilized in high-temperature shape memory alloys and as materials for energy applications in electric fields. However, they often exhibit poor deformation capability. Here, we prepared a low-symmetry intermetallic phase, Ti<sub>4</sub>Pt<sub>3</sub>, which demonstrates significant plastic deformation capability. This phase features a high density of parallel planar defects, resulting in an exceptionally large lattice periodicity perpendicular to these defects. Through in-situ scanning electron microscope compression tests, we observed substantial plastic deformation in this new phase. Analysis of the deformed Ti<sub>4</sub>Pt<sub>3</sub> phase revealed that the dense planar defects create uniformly distributed sites of internal stress concentration, enabling a rapid increase in back stress within crystals. This phenomenon leads to notable lattice rotation and localized order-disorder transitions, both crucial mechanisms facilitating plastic deformation and enhancing deformation capacity. Our research underscores the potential of leveraging structural asymmetry to enable unconventional deformation mechanisms, thereby enhancing the plasticity of intermetallic materials.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003312","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intermetallic compounds typically exhibit limited plastic deformation capacity due to challenges in activating dislocation slip and deformation twinning, coupled with a lack of alternative deformation mechanisms. Ti–Pt alloys are a prevalent type of intermetallic compound utilized in high-temperature shape memory alloys and as materials for energy applications in electric fields. However, they often exhibit poor deformation capability. Here, we prepared a low-symmetry intermetallic phase, Ti4Pt3, which demonstrates significant plastic deformation capability. This phase features a high density of parallel planar defects, resulting in an exceptionally large lattice periodicity perpendicular to these defects. Through in-situ scanning electron microscope compression tests, we observed substantial plastic deformation in this new phase. Analysis of the deformed Ti4Pt3 phase revealed that the dense planar defects create uniformly distributed sites of internal stress concentration, enabling a rapid increase in back stress within crystals. This phenomenon leads to notable lattice rotation and localized order-disorder transitions, both crucial mechanisms facilitating plastic deformation and enhancing deformation capacity. Our research underscores the potential of leveraging structural asymmetry to enable unconventional deformation mechanisms, thereby enhancing the plasticity of intermetallic materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含有高密度平面缺陷的低对称钛铂金属间化合物的变形机制
由于在激活位错滑移和变形孪晶方面存在挑战,再加上缺乏替代变形机制,金属间化合物通常表现出有限的塑性变形能力。钛铂合金是一种普遍的金属间化合物,可用于高温形状记忆合金和电场能源应用材料。然而,它们通常表现出很差的变形能力。在这里,我们制备了一种低对称性金属间化合物相 Ti4Pt3,它具有显著的塑性变形能力。该相具有高密度的平行平面缺陷,导致垂直于这些缺陷的晶格周期性特别大。通过原位扫描电子显微镜压缩试验,我们观察到这一新相具有很大的塑性变形能力。对变形 Ti4Pt3 相的分析表明,密集的平面缺陷产生了均匀分布的内应力集中点,使晶体内部的背应力迅速增加。这种现象导致了显著的晶格旋转和局部有序-无序转变,而这两种关键机制都有利于塑性变形和提高变形能力。我们的研究强调了利用结构不对称实现非常规变形机制的潜力,从而提高金属间化合物的塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Graphene oxide-containing chitosan@HKUST-1 beads with increased chemical stability for CO2 capture Novel MoS2-based heterojunction as an efficient and magnetically retrievable piezo-photocatalyst for diclofenac sodium degradation Enhanced dopamine detection using Ti3C2Tx/rGO/Pt ternary composite synthesized via microwave-assisted hydrothermal method Layered silicate PLS-3 with PREFER structure supported Pd nanoparticles: A recyclable catalyst for the synthesis of furfuryl ethyl ether The deformation mechanism of low symmetric Ti–Pt intermetallic compounds containing high density of planar defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1