Xiangyu Han , Bin Jia , Yu Zeng , Jinqiao Liu , Qilong Zhao , Zhenchao Yang , Qionglin Li , Xiaozhi Hu
{"title":"Fracture analysis of seawater sea-sand recycled aggregate concrete beams: Experimental study and analytical model","authors":"Xiangyu Han , Bin Jia , Yu Zeng , Jinqiao Liu , Qilong Zhao , Zhenchao Yang , Qionglin Li , Xiaozhi Hu","doi":"10.1016/j.tafmec.2024.104698","DOIUrl":null,"url":null,"abstract":"<div><div>Seawater sea-sand recycled aggregate concrete (SSRAC) has garnered significant attention from engineers involved in various coastal engineering projects. Fracture constitutes one of the primary failure modes of SSRAC, and the accurate analysis of its fracture behavior is crucial for application. In this present study, SSRAC with 50% aggregate replacement was subjected to three-point bending tests to evaluate its fracture performance. Specific methodologies for calculating SSRAC fracture toughness were introduced, taking into account the effects of material microstructures and specimen boundaries. By comparing the fracture properties of SSRAC specimens with varying initial notch lengths, the size effect was addressed by using established methods, resulting in a constant fracture toughness value. Furthermore, the methods for analyzing the fracture of un-notched specimens were developed, considering fracture path analysis and the influence of internal defects. Notably, this research demonstrated that small specimens and established methodologies efficiently predict the fracture behavior of larger specimens, providing practical insights for engineering applications.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"134 ","pages":"Article 104698"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004488","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Seawater sea-sand recycled aggregate concrete (SSRAC) has garnered significant attention from engineers involved in various coastal engineering projects. Fracture constitutes one of the primary failure modes of SSRAC, and the accurate analysis of its fracture behavior is crucial for application. In this present study, SSRAC with 50% aggregate replacement was subjected to three-point bending tests to evaluate its fracture performance. Specific methodologies for calculating SSRAC fracture toughness were introduced, taking into account the effects of material microstructures and specimen boundaries. By comparing the fracture properties of SSRAC specimens with varying initial notch lengths, the size effect was addressed by using established methods, resulting in a constant fracture toughness value. Furthermore, the methods for analyzing the fracture of un-notched specimens were developed, considering fracture path analysis and the influence of internal defects. Notably, this research demonstrated that small specimens and established methodologies efficiently predict the fracture behavior of larger specimens, providing practical insights for engineering applications.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.