Mohammad Faizan , Pravej Alam , Asha Kumari , Gali Suresh , Priyanka Sharma , Fadime Karabulut , Sipan Soysal , Ivica Djalovic , Goran Trivan , Muhammad Faheem Adil , Shafaque Sehar , Vishnu D. Rajput , Shamsul Hayat
{"title":"Unraveling the nano-biochar mediated regulation of heavy metal stress tolerance for sustaining plant health","authors":"Mohammad Faizan , Pravej Alam , Asha Kumari , Gali Suresh , Priyanka Sharma , Fadime Karabulut , Sipan Soysal , Ivica Djalovic , Goran Trivan , Muhammad Faheem Adil , Shafaque Sehar , Vishnu D. Rajput , Shamsul Hayat","doi":"10.1016/j.stress.2024.100615","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy metal (HM) toxicity of agricultural soils poses a major risk to plant health, human life, and global food chain. Crop output and health are negatively impacted when HM levels in agricultural soils reach hazardous points. The nano-biochar (nano-BC) mediated stress tolerance has attracted growing scientific interest because biochar has the potential to be a novel and sustainable solution that may be actively included into the development of sustainable agriculture and food production. At present, biochar is extensively employed as a powerful tool to enhance sustainable agriculture with minimal impact on ecosystems and the environment. Nano-BC offers improved surface area, adsorption and mobility properties in soil compared to traditional fertilizers. Furthermore, nano-BC may prove to be the most practical substitute for traditional waste management techniques because of its affordability, sustainability, and environmental friendliness. In this review, we examine the application of nano-BC in the regulation of HM stress tolerance for improving plant growth and development. We focus on the impact of HMs impact on crop productivity, nano-BC amendments, their application, and production. The article also explores the nano-BC risk and toxicity. Through the perspective of multidisciplinary research, this work highlights the significance of nano-BC as cutting-edge tools in the field of agriculture, igniting a paradigm shift toward sustainable and stress-resilient farming systems.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100615"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metal (HM) toxicity of agricultural soils poses a major risk to plant health, human life, and global food chain. Crop output and health are negatively impacted when HM levels in agricultural soils reach hazardous points. The nano-biochar (nano-BC) mediated stress tolerance has attracted growing scientific interest because biochar has the potential to be a novel and sustainable solution that may be actively included into the development of sustainable agriculture and food production. At present, biochar is extensively employed as a powerful tool to enhance sustainable agriculture with minimal impact on ecosystems and the environment. Nano-BC offers improved surface area, adsorption and mobility properties in soil compared to traditional fertilizers. Furthermore, nano-BC may prove to be the most practical substitute for traditional waste management techniques because of its affordability, sustainability, and environmental friendliness. In this review, we examine the application of nano-BC in the regulation of HM stress tolerance for improving plant growth and development. We focus on the impact of HMs impact on crop productivity, nano-BC amendments, their application, and production. The article also explores the nano-BC risk and toxicity. Through the perspective of multidisciplinary research, this work highlights the significance of nano-BC as cutting-edge tools in the field of agriculture, igniting a paradigm shift toward sustainable and stress-resilient farming systems.