{"title":"A novel high-Mn duplex twinning-induced plasticity lightweight steel with high yield strength and large ductility","authors":"","doi":"10.1016/j.jmrt.2024.09.198","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we report a novel high-Mn Fe–21Mn–6Al–4Si–1C (wt.%) duplex lightweight steel with concurrent chemical ordering and twinning-induced plasticity effects. This steel is capable of achieving an exceptional combination of strength and ductility following either cold-rolling and annealing at 1000 °C or subsequent short-term aging at 550 °C. In its as-annealed state, this steel primarily consists of γ-austenite and α-ferrite, with α-ferrite appearing as dispersed particles within fully recrystallized γ grains. Furthermore, L′1<sub>2</sub>- and D0<sub>3</sub>-type ordered nanodomains exist within these two phases, respectively. The aging treatment negligibly affects the size and volume fraction of both the γ-austenite and α-ferrite, yet it enhances the degree of ordering as well as the size and volume fraction of their ordered nanodomains, leading to a rise in yield strength from ∼800 to ∼1062 MPa and a decline in total elongation from ∼60.4% to ∼44.4%. The high yield strength of this steel originates from multiple strengthening mechanisms involving dislocation interactions with solute atoms, ordered nanodomains, γ grain boundaries and γ/α phase boundaries. This steel plastically deforms via planar slip during the initial stages. The rather small γ grain size, coupled with the presence of hard α-ferrite particles, fosters the dynamic slip band refinement (DSBR) effect, thereby enhancing the flow stress sufficiently to trigger deformation twinning in the steel during the later stages. The DSBR effect, combined with the progressive formation of deformation twins, stacking faults and Lomer-Cottrell locks, imparts pronounced strain hardenability to this steel, leading to its outstanding ductility.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424022038","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we report a novel high-Mn Fe–21Mn–6Al–4Si–1C (wt.%) duplex lightweight steel with concurrent chemical ordering and twinning-induced plasticity effects. This steel is capable of achieving an exceptional combination of strength and ductility following either cold-rolling and annealing at 1000 °C or subsequent short-term aging at 550 °C. In its as-annealed state, this steel primarily consists of γ-austenite and α-ferrite, with α-ferrite appearing as dispersed particles within fully recrystallized γ grains. Furthermore, L′12- and D03-type ordered nanodomains exist within these two phases, respectively. The aging treatment negligibly affects the size and volume fraction of both the γ-austenite and α-ferrite, yet it enhances the degree of ordering as well as the size and volume fraction of their ordered nanodomains, leading to a rise in yield strength from ∼800 to ∼1062 MPa and a decline in total elongation from ∼60.4% to ∼44.4%. The high yield strength of this steel originates from multiple strengthening mechanisms involving dislocation interactions with solute atoms, ordered nanodomains, γ grain boundaries and γ/α phase boundaries. This steel plastically deforms via planar slip during the initial stages. The rather small γ grain size, coupled with the presence of hard α-ferrite particles, fosters the dynamic slip band refinement (DSBR) effect, thereby enhancing the flow stress sufficiently to trigger deformation twinning in the steel during the later stages. The DSBR effect, combined with the progressive formation of deformation twins, stacking faults and Lomer-Cottrell locks, imparts pronounced strain hardenability to this steel, leading to its outstanding ductility.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.