Celso Henrique de Souza Lopes;Tomas Powell Villena Andrade;Luiz Augusto Melo Pereira;Evandro Conforti;Arismar Cerqueira Sodre Junior
{"title":"Implementation of HetNet architectures based on FSO, VLC, RoF, and photonics-based RF generation toward 6G applications","authors":"Celso Henrique de Souza Lopes;Tomas Powell Villena Andrade;Luiz Augusto Melo Pereira;Evandro Conforti;Arismar Cerqueira Sodre Junior","doi":"10.1364/JOCN.530373","DOIUrl":null,"url":null,"abstract":"This paper presents two distinct network architectures designed to address the demands of 5G/6G applications. The first architecture is an analog radio-over-fiber (RoF) optical fronthaul operating in the V-band at 60 GHz, integrated within a wavelength-division multiplexing passive optical network (WDM-PON). This setup employs photonic techniques for RF signal generation, specifically using carrier-suppressed double sideband (CS-DSB) modulation via Mach–Zehnder modulators (MZMs), enabling efficient frequency multiplication and signal transport. Experimental results demonstrate its ability to achieve a data rate of approximately 11.8 Gbit/s, meeting the requirements for 5G/6G cell densification. The second architecture is a heterogeneous network (HetNet) that combines fiber-wireless (FiWi), free space optics (FSO), and visible light communication (VLC) technologies in a unified network configuration designed for indoor 6G solutions. This HetNet architecture was tested at 39 GHz and features a 20 km optical fiber midhaul, an FSO fronthaul, and a dual VLC/RF access network. The setup was evaluated based on the root mean square error vector magnitude (\n<tex>${{\\rm EVM}_{{\\rm RMS}}}$</tex>\n) requirements, with results indicating satisfactory coexistence of the employed technologies, achieving a total data throughput of 1.5 Gbit/s.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 10","pages":"1070-1081"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10700052/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents two distinct network architectures designed to address the demands of 5G/6G applications. The first architecture is an analog radio-over-fiber (RoF) optical fronthaul operating in the V-band at 60 GHz, integrated within a wavelength-division multiplexing passive optical network (WDM-PON). This setup employs photonic techniques for RF signal generation, specifically using carrier-suppressed double sideband (CS-DSB) modulation via Mach–Zehnder modulators (MZMs), enabling efficient frequency multiplication and signal transport. Experimental results demonstrate its ability to achieve a data rate of approximately 11.8 Gbit/s, meeting the requirements for 5G/6G cell densification. The second architecture is a heterogeneous network (HetNet) that combines fiber-wireless (FiWi), free space optics (FSO), and visible light communication (VLC) technologies in a unified network configuration designed for indoor 6G solutions. This HetNet architecture was tested at 39 GHz and features a 20 km optical fiber midhaul, an FSO fronthaul, and a dual VLC/RF access network. The setup was evaluated based on the root mean square error vector magnitude (
${{\rm EVM}_{{\rm RMS}}}$
) requirements, with results indicating satisfactory coexistence of the employed technologies, achieving a total data throughput of 1.5 Gbit/s.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.