{"title":"On-Chip Sensor for Monitoring Crack Propagation in Solder Joints Using RF Signals: Electrical Modeling and Circuit Design","authors":"Tae Yeob Kang;Yunah Her;Byeongcheol Choe;Gwang-hyeon Jeong","doi":"10.1109/LSENS.2024.3459031","DOIUrl":null,"url":null,"abstract":"This letter presents an on-chip scale crack sensor for solder joints using radio frequency signals, essential for enhancing the reliability of electronic packages. The sensor design includes a Class F power amplifier and an envelope detector, based on an equivalent circuit model of cracked solder joints. Circuit simulations reveal that as a crack initiate, a resonant dip in the S-parameter pattern appears, with the resonant frequency decreasing as the crack propagates. Leveraging the resonant dip as a prognostic factor, the sensor can accurately characterize cracks in solder joints with easy-to-handle dc output. The sensor, which provides a maximum crack length sensitivity of 0.05 GHz/\n<inline-formula><tex-math>$\\upmu$</tex-math></inline-formula>\nm, is highly sensitive and can be fabricated on-chip.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10678841/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents an on-chip scale crack sensor for solder joints using radio frequency signals, essential for enhancing the reliability of electronic packages. The sensor design includes a Class F power amplifier and an envelope detector, based on an equivalent circuit model of cracked solder joints. Circuit simulations reveal that as a crack initiate, a resonant dip in the S-parameter pattern appears, with the resonant frequency decreasing as the crack propagates. Leveraging the resonant dip as a prognostic factor, the sensor can accurately characterize cracks in solder joints with easy-to-handle dc output. The sensor, which provides a maximum crack length sensitivity of 0.05 GHz/
$\upmu$
m, is highly sensitive and can be fabricated on-chip.