{"title":"Back Cover Image, Volume 6, Number 9, September 2024","authors":"Qi Lai, Bincen Yin, Yu Dou, Qing Zhang, Yunhai Zhu, Yingkui Yang","doi":"10.1002/cey2.660","DOIUrl":null,"url":null,"abstract":"<p><b><i>Back cover image</i></b>: To achieve high-performance practical batteries, synergistically engineering intrinsic defects and heterostructures of metal oxide electrodes is highly desirable but remains challenging. In article number cey2.517, Yang <i>et al.</i> report on the crafting of hierarchically-electrospun carbon nanofibers integrated with oxygen vacancies-enriched V<sub>2</sub>O<sub>3</sub> nanosheets. Accordingly, the as-fabricated V<sub>2</sub>O<sub>3</sub> anode shows high reversible capacity, superior rate capability, and long cycling stability. An all-electrospun full-battery with an electrospun V<sub>2</sub>O<sub>5</sub> cathode and an electrospun polyimide separator is further assembled that delivers an impressive energy density at the high power density.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 9","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.660","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.660","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Back cover image: To achieve high-performance practical batteries, synergistically engineering intrinsic defects and heterostructures of metal oxide electrodes is highly desirable but remains challenging. In article number cey2.517, Yang et al. report on the crafting of hierarchically-electrospun carbon nanofibers integrated with oxygen vacancies-enriched V2O3 nanosheets. Accordingly, the as-fabricated V2O3 anode shows high reversible capacity, superior rate capability, and long cycling stability. An all-electrospun full-battery with an electrospun V2O5 cathode and an electrospun polyimide separator is further assembled that delivers an impressive energy density at the high power density.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.