Asymmetric bridge structure based on NiFe bimetallic sites for optimizing nitrate reduction reaction

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2024-10-01 DOI:10.1016/j.checat.2024.101122
Yuhu Zhou, Ping Deng, Jiechun Zhou, Gan Jia, Xiaoxuan Chen, Wei Wang, Shuang Zhao, Liang Chen, Wei Ye, Guoyang Zhou, Shiyu Du, Peng Gao
{"title":"Asymmetric bridge structure based on NiFe bimetallic sites for optimizing nitrate reduction reaction","authors":"Yuhu Zhou, Ping Deng, Jiechun Zhou, Gan Jia, Xiaoxuan Chen, Wei Wang, Shuang Zhao, Liang Chen, Wei Ye, Guoyang Zhou, Shiyu Du, Peng Gao","doi":"10.1016/j.checat.2024.101122","DOIUrl":null,"url":null,"abstract":"Achieving precise control and an accurate understanding of reaction processes that occur on catalysts at the molecular level is still challenging yet crucial to digging out ideal materials for the nitrate reduction reaction (NO<sub>3</sub>RR). Considering the representativeness of non-precious metal catalysts and the adjustability of their d electronic states, NiFe bimetallic nanocatalysts with various content ratios were synthesized to evaluate their positive characteristics on the electrochemical NO<sub>3</sub>RR. Eventually, the Ni<sub>0.7</sub>Fe<sub>0.3</sub> sample inclined toward the cubic FeNi<sub>3</sub> structure was proven to have the best electrocatalytic NO<sub>3</sub>RR performance: 13.61 mol g<sup>−1</sup> h<sup>−1</sup> ammonia production efficiency (APE) and 99.53% Faradaic efficiency (FE) under 1 M KNO<sub>3</sub> and 47.94 mmol g<sup>−1</sup> h<sup>−1</sup> APE and 95.04% FE under 1 mM KNO<sub>3</sub>, superior to most reported electrocatalysts. Moreover, the above data outline the complete evolution of the distinct nitrogen-containing intermediate restricted by the NiFe-based asymmetric bridge structure.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"26 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving precise control and an accurate understanding of reaction processes that occur on catalysts at the molecular level is still challenging yet crucial to digging out ideal materials for the nitrate reduction reaction (NO3RR). Considering the representativeness of non-precious metal catalysts and the adjustability of their d electronic states, NiFe bimetallic nanocatalysts with various content ratios were synthesized to evaluate their positive characteristics on the electrochemical NO3RR. Eventually, the Ni0.7Fe0.3 sample inclined toward the cubic FeNi3 structure was proven to have the best electrocatalytic NO3RR performance: 13.61 mol g−1 h−1 ammonia production efficiency (APE) and 99.53% Faradaic efficiency (FE) under 1 M KNO3 and 47.94 mmol g−1 h−1 APE and 95.04% FE under 1 mM KNO3, superior to most reported electrocatalysts. Moreover, the above data outline the complete evolution of the distinct nitrogen-containing intermediate restricted by the NiFe-based asymmetric bridge structure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 NiFe 双金属位点的不对称桥式结构,用于优化硝酸盐还原反应
在分子水平上实现对催化剂反应过程的精确控制和准确理解,对于挖掘硝酸盐还原反应(NO3RR)的理想材料来说仍然具有挑战性和关键性。考虑到非贵金属催化剂的代表性及其 d 电子态的可调节性,研究人员合成了不同含量比的 NiFe 双金属纳米催化剂,以评估它们在电化学 NO3RR 反应中的积极特性。最终,倾向于立方 FeNi3 结构的 Ni0.7Fe0.3 样品被证明具有最佳的 NO3RR 电催化性能:在 1 M KNO3 条件下,其产氨效率(APE)为 13.61 mol g-1 h-1 ,法拉第效率(FE)为 99.53%;在 1 mM KNO3 条件下,其产氨效率(APE)为 47.94 mmol g-1 h-1 ,法拉第效率(FE)为 95.04%,优于大多数已报道的电催化剂。此外,上述数据还概述了受 NiFe 基不对称桥结构限制的独特含氮中间体的完全演化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
Reverse effect of metal-support interaction on platinum and iridium catalysts in ammonia selective oxidation Visualizing active species in CO2 electroreduction Key role of precatalyst composition and iron impurities in oxygen evolution reaction Enzymatic azide synthesis by ATP-dependent synthetase Visualizing the step bunching on Pt surfaces and its effect in electrocatalysis with EC-STM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1