{"title":"Synergistic functional additives on cycling performance of silicon-carbon composite anode in pouch cells","authors":"Jun Cheng, Zhenyu Huang, Anqi Lu, Aiqi He, Yuxuan Shao, Yuxin Fan, Yunhui Huang","doi":"10.1016/j.jmat.2024.100941","DOIUrl":null,"url":null,"abstract":"With increasing application demands of electronics and electric vehicles, the energy density of lithium-ion batteries (LIBs) is expected to be higher and higher. The silicon-based anode materials have triggered global research interest due to low operating voltage and high specific capacity. However, for the Si-based anode, the large volume change during cycling causes cracking and pulverization of Si particles, leading to the sluggish kinetics and poor cycle life. In this work, fluoroethylene carbonate (FEC) and lithium bis(fluorosulfonyl)imide (LiFSI) are used as synergistic functional additives to enhance the performance of silicon–carbon (Si–C) composite anode in pouch cell. The properties of solid electrolyte interphase (SEI) formed on the surface of Si–C composite anode have been systematically investigated. The images of different electrolytes infiltration and gas production after formation are analyzed with ultrasonic transmission scanning technique. DFT calculations are used to illustrate the mechanism. All date collection is at pouch cell level, which is more persuasive.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"129 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100941","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With increasing application demands of electronics and electric vehicles, the energy density of lithium-ion batteries (LIBs) is expected to be higher and higher. The silicon-based anode materials have triggered global research interest due to low operating voltage and high specific capacity. However, for the Si-based anode, the large volume change during cycling causes cracking and pulverization of Si particles, leading to the sluggish kinetics and poor cycle life. In this work, fluoroethylene carbonate (FEC) and lithium bis(fluorosulfonyl)imide (LiFSI) are used as synergistic functional additives to enhance the performance of silicon–carbon (Si–C) composite anode in pouch cell. The properties of solid electrolyte interphase (SEI) formed on the surface of Si–C composite anode have been systematically investigated. The images of different electrolytes infiltration and gas production after formation are analyzed with ultrasonic transmission scanning technique. DFT calculations are used to illustrate the mechanism. All date collection is at pouch cell level, which is more persuasive.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.