Young Jae Choi, MohammadNavid Haddadnezhad, Seung Jong Baek, Chan-Nyoung Lee, Sungho Park, Sang Jun Sim
{"title":"Plasmonic Nanogap-Enhanced Tunable Three-Dimensional Nanoframes in Application to Clinical Diagnosis of Alzheimer's Disease.","authors":"Young Jae Choi, MohammadNavid Haddadnezhad, Seung Jong Baek, Chan-Nyoung Lee, Sungho Park, Sang Jun Sim","doi":"10.1021/acssensors.4c02037","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in nanotechnology led to significant improvements in synthesizing plasmon-enhanced nanoarchitectures for biosensor applications, and high-yield productivity at low cost is vital to step further into medical commerce. Metal nanoframes via wet chemistry are gaining attention for their homogeneous structure and outstanding catalytic and optical properties. However, nanoframe morphology should be considered delicately when brought to biosensors to utilize its superior characteristics thoroughly, and the need to prove its clinical applicability still remains. Herein, we controlled the frameworks of double-walled nanoframes (DWFs) precisely via wet chemistry to construct a homogeneous plasmon-enhanced nanotransducer for localized surface plasmon resonance biosensors. By tuning the physical properties considering the finite-difference time-domain simulation results, biomolecular interactions were feasible in the electromagnetic field-enhanced nanospace. As a result, DWF<sub>10</sub> exhibited a 10-fold lower detection limit of 2.21 fM compared to DWF<sub>14</sub> for tau detection. Further application into blood-based clinical and Alzheimer's disease (AD) diagnostics, notable improvement in classifying mild cognitive impairment patients against healthy controls and AD patients, was demonstrated along with impressive AUC values. Thus, in response to diverse detection methods, optimizing nanoframe dimensions such as nanogap and frame thickness to maximize sensor performance is critical to realize future POCT diagnosis.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":" ","pages":"5587-5595"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in nanotechnology led to significant improvements in synthesizing plasmon-enhanced nanoarchitectures for biosensor applications, and high-yield productivity at low cost is vital to step further into medical commerce. Metal nanoframes via wet chemistry are gaining attention for their homogeneous structure and outstanding catalytic and optical properties. However, nanoframe morphology should be considered delicately when brought to biosensors to utilize its superior characteristics thoroughly, and the need to prove its clinical applicability still remains. Herein, we controlled the frameworks of double-walled nanoframes (DWFs) precisely via wet chemistry to construct a homogeneous plasmon-enhanced nanotransducer for localized surface plasmon resonance biosensors. By tuning the physical properties considering the finite-difference time-domain simulation results, biomolecular interactions were feasible in the electromagnetic field-enhanced nanospace. As a result, DWF10 exhibited a 10-fold lower detection limit of 2.21 fM compared to DWF14 for tau detection. Further application into blood-based clinical and Alzheimer's disease (AD) diagnostics, notable improvement in classifying mild cognitive impairment patients against healthy controls and AD patients, was demonstrated along with impressive AUC values. Thus, in response to diverse detection methods, optimizing nanoframe dimensions such as nanogap and frame thickness to maximize sensor performance is critical to realize future POCT diagnosis.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.