Effect of Adding Benzyl Alcohol on Hydrogen Production from Lignite.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2024-10-02 DOI:10.1007/s12010-024-05074-3
Hongwang Liang, Ying Wang, Jun Li, Zhimin Zhao, Litong Ma
{"title":"Effect of Adding Benzyl Alcohol on Hydrogen Production from Lignite.","authors":"Hongwang Liang, Ying Wang, Jun Li, Zhimin Zhao, Litong Ma","doi":"10.1007/s12010-024-05074-3","DOIUrl":null,"url":null,"abstract":"<p><p>Combustion power generation is still the main way of lignite utilization, but lignite combustion will produce a lot of toxic gases, so how to make lignite clean utilization has become an urgent problem to be solved. Hydrogen is an environmentally friendly, zero-carbon emission clean energy because microorganisms can degrade brown coal to produce hydrogen. Therefore, in this experiment, the anaerobic hydrogen production experiment of lignite was carried out, and the influence of different concentrations of benzyl alcohol on hydrogen production of lignite was studied. The results showed that the addition of 500 mg/L benzyl alcohol had the most significant effect on the hydrogen production of lignite, and the total hydrogen production reached 1.70 mL/g, which was 47.83% higher than that of the blank group. The addition of benzyl alcohol extended the peak time of hydrogen production in lignite fermentation. The peak hydrogen production time of 500 mg/L benzyl alcohol in the middle and late stage was 8 days, 5 days longer than that in the blank group. The peak hydrogen production of 500 mg/L benzyl alcohol in the middle and late stage was 0.11 mL/g, which was 2.75 times that of 0.04 mL/g in the blank group. Hydrogen production of lignite is mainly produced by acetic acid and propionic acid fermentation, which is different from butyric acid metabolic pathway of biomass microbial transformation such as crop straw and kitchen waste. This also provides a new way and theoretical basis for the fermentation of lignite to produce hydrogen.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05074-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Combustion power generation is still the main way of lignite utilization, but lignite combustion will produce a lot of toxic gases, so how to make lignite clean utilization has become an urgent problem to be solved. Hydrogen is an environmentally friendly, zero-carbon emission clean energy because microorganisms can degrade brown coal to produce hydrogen. Therefore, in this experiment, the anaerobic hydrogen production experiment of lignite was carried out, and the influence of different concentrations of benzyl alcohol on hydrogen production of lignite was studied. The results showed that the addition of 500 mg/L benzyl alcohol had the most significant effect on the hydrogen production of lignite, and the total hydrogen production reached 1.70 mL/g, which was 47.83% higher than that of the blank group. The addition of benzyl alcohol extended the peak time of hydrogen production in lignite fermentation. The peak hydrogen production time of 500 mg/L benzyl alcohol in the middle and late stage was 8 days, 5 days longer than that in the blank group. The peak hydrogen production of 500 mg/L benzyl alcohol in the middle and late stage was 0.11 mL/g, which was 2.75 times that of 0.04 mL/g in the blank group. Hydrogen production of lignite is mainly produced by acetic acid and propionic acid fermentation, which is different from butyric acid metabolic pathway of biomass microbial transformation such as crop straw and kitchen waste. This also provides a new way and theoretical basis for the fermentation of lignite to produce hydrogen.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加苄醇对褐煤制氢的影响
燃烧发电仍是褐煤利用的主要方式,但褐煤燃烧会产生大量有毒气体,如何使褐煤清洁利用成为亟待解决的问题。氢气是一种环保、零碳排放的清洁能源,因为微生物可以降解褐煤产生氢气。因此,本实验进行了褐煤厌氧制氢实验,研究了不同浓度苯甲醇对褐煤制氢的影响。结果表明,添加 500 mg/L 苯甲醇对褐煤产氢的影响最为显著,总产氢量达到 1.70 mL/g,比空白组高出 47.83%。苯甲醇的加入延长了褐煤发酵的产氢峰值时间。500 mg/L 苯甲醇中后期的产氢峰值时间为 8 天,比空白组延长了 5 天。中后期 500 mg/L 苯甲醇的产氢峰值为 0.11 mL/g,是空白组 0.04 mL/g 的 2.75 倍。褐煤制氢主要由乙酸和丙酸发酵产生,与农作物秸秆、餐厨垃圾等生物质微生物转化的丁酸代谢途径不同。这也为褐煤发酵制氢提供了新的途径和理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
E2F1 Promotes the Occurrence of Head and Neck Squamous Cell Carcinoma and Serves as a Prognostic Biomarker. Field-Based cDNA-Biosensor for Accurate Detection of Canine Distemper Virus in Tissue Samples. Activation of Cryptic Secondary Metabolite Biosynthesis in Tobacco BY-2 Suspension Cells by Epigenetic Modifiers. Retraction Note: Diterpene Coronarin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Both In Vivo and In Vitro Models. Gynostemma pentaphyllum (Thunb.) Makino Affects Autophagy and Improves Diabetic Peripheral Neuropathy Through TXNIP-Mediated PI3K/AKT/mTOR Signaling Pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1