首页 > 最新文献

Applied Biochemistry and Biotechnology最新文献

英文 中文
Antiviral Cellulose-Lignin Assembly Entirely Composed of Plant Cell Wall Components.
IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-07 DOI: 10.1007/s12010-025-05184-6
Chihiro Kimura, Eriko Ohgitani, Osam Mazda, Takashi Watanabe

Antiviral lignin, designated as FR200, was produced using acidic microwave glycerolysis of sugarcane bagasse. The lignin strongly inhibited infection by the human norovirus surrogate, feline calicivirus (FCV) without substantial cytotoxicity. The antiviral activity emerged through direct contact of the lignin with the virion. To develop antiviral fibers, cotton was coated with the antiviral lignin AIF200, a crude fraction obtained in the process of FR200 preparation. Autofluorescence microscope images confirmed successful even coating of the lignin on the cellulose fiber surfaces. ATR FT-IR spectra supported the incorporation of the lignin. The strong anti-FCV activity of the cellulose-lignin assembly was observed by measuring viral titers of the filtrate passing through the lignin-immobilized cotton. The antiviral material developed in this study, totally composed of lignocellulosic biomass, is potentially useful for protecting our health by capturing virions in daily life and livestock environments.

{"title":"Antiviral Cellulose-Lignin Assembly Entirely Composed of Plant Cell Wall Components.","authors":"Chihiro Kimura, Eriko Ohgitani, Osam Mazda, Takashi Watanabe","doi":"10.1007/s12010-025-05184-6","DOIUrl":"https://doi.org/10.1007/s12010-025-05184-6","url":null,"abstract":"<p><p>Antiviral lignin, designated as FR<sub>200</sub>, was produced using acidic microwave glycerolysis of sugarcane bagasse. The lignin strongly inhibited infection by the human norovirus surrogate, feline calicivirus (FCV) without substantial cytotoxicity. The antiviral activity emerged through direct contact of the lignin with the virion. To develop antiviral fibers, cotton was coated with the antiviral lignin AIF<sub>200</sub>, a crude fraction obtained in the process of FR<sub>200</sub> preparation. Autofluorescence microscope images confirmed successful even coating of the lignin on the cellulose fiber surfaces. ATR FT-IR spectra supported the incorporation of the lignin. The strong anti-FCV activity of the cellulose-lignin assembly was observed by measuring viral titers of the filtrate passing through the lignin-immobilized cotton. The antiviral material developed in this study, totally composed of lignocellulosic biomass, is potentially useful for protecting our health by capturing virions in daily life and livestock environments.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesenchymal Stem Cell-Derived Exosome miR-153-3 Induced M2-Type Polarization of Macrophages to Improve the Healing Effect of Burn Wounds.
IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-07 DOI: 10.1007/s12010-025-05196-2
Chonggen Huang, Guozhong Lu, Zhigang Jia, Jiong Yan

The healing process of wounds, as soft tissue injuries, is challenging. Bone marrow mesenchymal stem cells (BMSCs) and exosomes (Ex) they secrete are critical for skin wound healing. Paracrine signaling mechanisms appear to facilitate the therapeutic properties of BMSCs. However, BMSC therapy has not yet been extensively explored in terms of specific cellular interactions between macrophages and BMSCs. In this study, macrophage depletion had a substantial negative impact on the wound healing capabilities of BMSCs, highlighting macrophages' crucial role in facilitating wound healing processes mediated by BMSCs. BMSCs transferred to the wound site promoted M2 polarization and alleviated wound healing. The co-cultivation of BMSCs and macrophages resulted in an enhanced phenotypic polarization towards M2. A mechanistic explanation for this effect was found in BMSCs-Ex. Additionally, miR-153-3p, derived from BMSCs-Ex, was identified as a regulator of macrophage polarization via its targeting of KPNA5. Through the transfer of BMSCs-Ex-derived miR-153-3p, BMSCs are capable of promoting M2 polarization and can potentially facilitate wound healing.

{"title":"Mesenchymal Stem Cell-Derived Exosome miR-153-3 Induced M2-Type Polarization of Macrophages to Improve the Healing Effect of Burn Wounds.","authors":"Chonggen Huang, Guozhong Lu, Zhigang Jia, Jiong Yan","doi":"10.1007/s12010-025-05196-2","DOIUrl":"https://doi.org/10.1007/s12010-025-05196-2","url":null,"abstract":"<p><p>The healing process of wounds, as soft tissue injuries, is challenging. Bone marrow mesenchymal stem cells (BMSCs) and exosomes (Ex) they secrete are critical for skin wound healing. Paracrine signaling mechanisms appear to facilitate the therapeutic properties of BMSCs. However, BMSC therapy has not yet been extensively explored in terms of specific cellular interactions between macrophages and BMSCs. In this study, macrophage depletion had a substantial negative impact on the wound healing capabilities of BMSCs, highlighting macrophages' crucial role in facilitating wound healing processes mediated by BMSCs. BMSCs transferred to the wound site promoted M2 polarization and alleviated wound healing. The co-cultivation of BMSCs and macrophages resulted in an enhanced phenotypic polarization towards M2. A mechanistic explanation for this effect was found in BMSCs-Ex. Additionally, miR-153-3p, derived from BMSCs-Ex, was identified as a regulator of macrophage polarization via its targeting of KPNA5. Through the transfer of BMSCs-Ex-derived miR-153-3p, BMSCs are capable of promoting M2 polarization and can potentially facilitate wound healing.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bone Marrow Mesenchymal Stem Cell-Originated Exosomes Curb Oxidative Stress and Pyroptosis Triggered by Ovarian Ischemia/Reperfusion via the TXNIP/NLRP3 Inflammasome Pathway.
IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-05 DOI: 10.1007/s12010-025-05188-2
Min Xu, Min Don, Yiyuan Chen, Mingzhe Zhang

Mesenchymal stem cells (MSCs) and their secreted exosomes (Exos) have attracted much interest for their potential against ischemia/reperfusion injury (IRI). In the present research, we employed rat ovarian ischemia/reperfusion injury (OIRI) model and hypoxia/reoxygenation (H/R) model of primary rat ovarian granulosa cells (RGCs) to investigate whether BMSC-Exos could alleviate OIRI. Our data suggested that administration of BMSCs in rats significantly reduced OIRI-resultant histopathological changes, oxidative stress, inflammation, and pyroptosis. In addition, BMSCs downregulated the expression of proteins related to the TXNIP/NLRP3 inflammasome pathway. Based on in vitro experiments, BMSC-Exos could be internalized by RGCs and curbed oxidative stress and pyroptosis in H/R-injured RGCs. This effect may be due to the regulation of TXNIP/NLRP3 inflammasome pathway. Remarkably, our in vivo data were in concordance with our in vitro results, suggesting that BMSC-Exos suppressed OIRI-induced oxidative stress and pyroptosis via the TXNIP/NLRP3 inflammasome pathway. Overall, these results demonstrate good therapeutic efficacy of BMSC-Exos for treating OIRI, which may provide experimental evidence for the potential clinical benefits of BMSC-Exos for ovarian protection.

{"title":"Bone Marrow Mesenchymal Stem Cell-Originated Exosomes Curb Oxidative Stress and Pyroptosis Triggered by Ovarian Ischemia/Reperfusion via the TXNIP/NLRP3 Inflammasome Pathway.","authors":"Min Xu, Min Don, Yiyuan Chen, Mingzhe Zhang","doi":"10.1007/s12010-025-05188-2","DOIUrl":"https://doi.org/10.1007/s12010-025-05188-2","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) and their secreted exosomes (Exos) have attracted much interest for their potential against ischemia/reperfusion injury (IRI). In the present research, we employed rat ovarian ischemia/reperfusion injury (OIRI) model and hypoxia/reoxygenation (H/R) model of primary rat ovarian granulosa cells (RGCs) to investigate whether BMSC-Exos could alleviate OIRI. Our data suggested that administration of BMSCs in rats significantly reduced OIRI-resultant histopathological changes, oxidative stress, inflammation, and pyroptosis. In addition, BMSCs downregulated the expression of proteins related to the TXNIP/NLRP3 inflammasome pathway. Based on in vitro experiments, BMSC-Exos could be internalized by RGCs and curbed oxidative stress and pyroptosis in H/R-injured RGCs. This effect may be due to the regulation of TXNIP/NLRP3 inflammasome pathway. Remarkably, our in vivo data were in concordance with our in vitro results, suggesting that BMSC-Exos suppressed OIRI-induced oxidative stress and pyroptosis via the TXNIP/NLRP3 inflammasome pathway. Overall, these results demonstrate good therapeutic efficacy of BMSC-Exos for treating OIRI, which may provide experimental evidence for the potential clinical benefits of BMSC-Exos for ovarian protection.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of ATP Citrate Lyase by Hydroxycitrate-Loaded Exosomes Suppresses the Survival of Lung Adenocarcinoma Cells.
IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 DOI: 10.1007/s12010-025-05204-5
Kanika Phutela, Priyanca Ahlawat, Jyotdeep Kaur, Amanjit Bal, Navneet Singh, Harkant Singh, Sadhna Sharma

The metabolic enzyme ATP citrate lyase is overexpressed in several cancers and links glucose metabolism with de novo fatty acid synthesis pathway by catalyzing the conversion of citrate into acetyl CoA and oxaloacetate. Potassium hydroxycitrate, its natural inhibitor, exhibits anticancer activity; however, its use is limited due to low bioavailability. This study aims to improve the efficacy of hydroxycitrate by its encapsulation in bovine milk exosome surface conjugated with folate for targeting lung cancer cells. The mean particle size of potassium hydroxycitrate-loaded exosomes (Exo-KH) and paclitaxel exosomes (Exo-Pac) was 183 nm and 174 nm; they had spherical morphology and encapsulation efficiency of 16.87 ± 2.78% and 27.65 ± 3.23%, respectively. In the in vitro study, Exo-KH suppressed the proliferation of A549 cells and significantly reduced ACLY mRNA expression. In addition to ACLY, EXO-KH also downregulated the mRNA expression of other crucial metabolic enzymes such as fatty acid synthase and isocitrate dehydrogenase 1. EXO-KH formulation caused significant increase in apoptosis rate (< 75%) and reactive oxygen species production and reduced ACLY protein expression in A549 cells. Moreover, the pharmacokinetic study revealed the sustained release of hydroxycitrate (half-life 22.74 h and clearance 0.13 µg/ml) from the exoformulation. Altogether, the study findings highlight the beneficial role of EXO-KH formulation against lung cancer.

代谢酶 ATP 柠檬酸裂解酶在几种癌症中过度表达,它通过催化柠檬酸转化为乙酰 CoA 和草酰乙酸,将葡萄糖代谢与新脂肪酸合成途径联系起来。羟基柠檬酸钾是其天然抑制剂,具有抗癌活性,但由于生物利用度低,其使用受到限制。本研究旨在通过将羟基柠檬酸钾封装在牛乳外泌体表面,并与叶酸结合,提高其针对肺癌细胞的疗效。负载了羟基柠檬酸钾的外泌体(Exo-KH)和紫杉醇外泌体(Exo-Pac)的平均粒径分别为183 nm和174 nm;它们呈球形,包封效率分别为16.87 ± 2.78%和27.65 ± 3.23%。在体外研究中,EXO-KH抑制了A549细胞的增殖,并显著降低了ACLY mRNA的表达。除 ACLY 外,EXO-KH 还下调了脂肪酸合成酶和异柠檬酸脱氢酶 1 等其他重要代谢酶的 mRNA 表达。EXO-KH制剂导致细胞凋亡率显著增加((
{"title":"Inhibition of ATP Citrate Lyase by Hydroxycitrate-Loaded Exosomes Suppresses the Survival of Lung Adenocarcinoma Cells.","authors":"Kanika Phutela, Priyanca Ahlawat, Jyotdeep Kaur, Amanjit Bal, Navneet Singh, Harkant Singh, Sadhna Sharma","doi":"10.1007/s12010-025-05204-5","DOIUrl":"https://doi.org/10.1007/s12010-025-05204-5","url":null,"abstract":"<p><p>The metabolic enzyme ATP citrate lyase is overexpressed in several cancers and links glucose metabolism with de novo fatty acid synthesis pathway by catalyzing the conversion of citrate into acetyl CoA and oxaloacetate. Potassium hydroxycitrate, its natural inhibitor, exhibits anticancer activity; however, its use is limited due to low bioavailability. This study aims to improve the efficacy of hydroxycitrate by its encapsulation in bovine milk exosome surface conjugated with folate for targeting lung cancer cells. The mean particle size of potassium hydroxycitrate-loaded exosomes (Exo-KH) and paclitaxel exosomes (Exo-Pac) was 183 nm and 174 nm; they had spherical morphology and encapsulation efficiency of 16.87 ± 2.78% and 27.65 ± 3.23%, respectively. In the in vitro study, Exo-KH suppressed the proliferation of A549 cells and significantly reduced ACLY mRNA expression. In addition to ACLY, EXO-KH also downregulated the mRNA expression of other crucial metabolic enzymes such as fatty acid synthase and isocitrate dehydrogenase 1. EXO-KH formulation caused significant increase in apoptosis rate (< 75%) and reactive oxygen species production and reduced ACLY protein expression in A549 cells. Moreover, the pharmacokinetic study revealed the sustained release of hydroxycitrate (half-life 22.74 h and clearance 0.13 µg/ml) from the exoformulation. Altogether, the study findings highlight the beneficial role of EXO-KH formulation against lung cancer.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-Pot Synthesis and Characterization of Naringenin-Capped Silver Nanoparticles with Enhanced Biological Activities.
IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-26 DOI: 10.1007/s12010-025-05181-9
Neelima Sathianathan, Vipina Vinod Thazhenandayipurath, Aparna Vadakoot Mukundan, Aparna Raj, Vidya Latha, Radhakrishnan Edayileveetil Krishnankutty, Sudarsanakumar Chellappanpillai

Flavonoids are known to possess biological effects like anti-inflammatory, antibacterial, antioxidant, and antidiabetic properties. Similarly, silver nanoparticles (AgNPs) have been widely used in the biomedical industry for therapy and diagnostics for a long time. This study investigates the potential of naringenin functionalized silver nanoparticles (AgN NPs) as a potential wound healing agent. The synthesis of AgN NPs was carried out using the one-pot synthesis method in the alkaline pH. Naringenin is used as the capping and the reducing agent. The naringenin-capped AgNPs were synthesized in six different concentrations. The structural, morphological, and spectroscopic characterization for each sample was conducted. The size of the nanoparticles was studied using the dynamic light scattering (DLS) experiment and further confirmed using TEM. The crystalline structure was investigated using X-ray diffraction, and AgN NPs exhibited a fcc crystal structure. The FTIR confirmed the capping of naringenin on AgNPs. All samples were tested for antibacterial activity, and the results demonstrated zones of inhibition against both Gram-positive Staphylococcus aureus and Gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa. Also, AgN NPs exhibited dose-dependent anti-inflammatory, antioxidant, and antidiabetic properties. The wound healing potential of AgN NPs was evaluated using a scratch wound assay in L929 cell lines. After 24 h, the scratch area was significantly reduced in the AgN NPs-treated sample, indicating enhanced cell migration compared to naringenin. Hence, these findings suggest that AgN NPs may serve as a more promising wound-healing agent than naringenin.

{"title":"One-Pot Synthesis and Characterization of Naringenin-Capped Silver Nanoparticles with Enhanced Biological Activities.","authors":"Neelima Sathianathan, Vipina Vinod Thazhenandayipurath, Aparna Vadakoot Mukundan, Aparna Raj, Vidya Latha, Radhakrishnan Edayileveetil Krishnankutty, Sudarsanakumar Chellappanpillai","doi":"10.1007/s12010-025-05181-9","DOIUrl":"https://doi.org/10.1007/s12010-025-05181-9","url":null,"abstract":"<p><p>Flavonoids are known to possess biological effects like anti-inflammatory, antibacterial, antioxidant, and antidiabetic properties. Similarly, silver nanoparticles (AgNPs) have been widely used in the biomedical industry for therapy and diagnostics for a long time. This study investigates the potential of naringenin functionalized silver nanoparticles (AgN NPs) as a potential wound healing agent. The synthesis of AgN NPs was carried out using the one-pot synthesis method in the alkaline pH. Naringenin is used as the capping and the reducing agent. The naringenin-capped AgNPs were synthesized in six different concentrations. The structural, morphological, and spectroscopic characterization for each sample was conducted. The size of the nanoparticles was studied using the dynamic light scattering (DLS) experiment and further confirmed using TEM. The crystalline structure was investigated using X-ray diffraction, and AgN NPs exhibited a fcc crystal structure. The FTIR confirmed the capping of naringenin on AgNPs. All samples were tested for antibacterial activity, and the results demonstrated zones of inhibition against both Gram-positive Staphylococcus aureus and Gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa. Also, AgN NPs exhibited dose-dependent anti-inflammatory, antioxidant, and antidiabetic properties. The wound healing potential of AgN NPs was evaluated using a scratch wound assay in L929 cell lines. After 24 h, the scratch area was significantly reduced in the AgN NPs-treated sample, indicating enhanced cell migration compared to naringenin. Hence, these findings suggest that AgN NPs may serve as a more promising wound-healing agent than naringenin.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Integrative Approach Using Molecular and Metabolomic Studies Reveals the Connection of Glutamic Acid with Telomerase and Oxidative Stress in Berberine-Treated Colorectal Cancer Cell Line HCT 116.
IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-26 DOI: 10.1007/s12010-025-05200-9
Muhammad Azizan Samad, Arief Izzairy Zamani, Nazia Abdul Majid, Saiful Anuar Karsani, Syarul Nataqain Baharum, Jamilah Syafawati Yaacob, Mohd Zuwairi Saiman

Colorectal cancer (CRC) is one of the common deadliest cancers worldwide. In Malaysia, the numbers of new CRC cases were horrific and worrisome. Telomerase is both prognostic indicator and predictor of carcinogenesis in CRC patients. Berberine, a telomerase inhibitor, was used in clinical trials and metabolomic studies; however, the association of telomerase with metabolites and metabolic pathways was not fully understood. Colorectal cancer cell line HCT 116 was cultured and treated with 10.54 µg/mL berberine. The cells were harvested at different time points to conduct subsequent analyses. The methods used in this research were real time-polymerase chain reaction (RT-PCR) to assess RNA expressions; Western blot to determine protein levels; TELOTAGGG Telomerase PCR ELISA to determine relative telomerase activity (RTA); 4',6-diamidino-2-phenylindole (DAPI) staining to determine percentage of nuclei damage; fluorescence microscopy for cell area; spectrophotometric potassium iodide assay for intracellular hydrogen peroxide concentration [H2O2]; as well as liquid chromatography mass spectrometry (LCMS) and tandem mass spectrometry (MS/MS) to investigate the intracellular metabolites. Partial least square-discriminant analysis (PLS-DA) score plot exhibited an improved separation compared to principal component analysis (PCA) when metabolomic data analysis of HCT 116 at various berberine treatment durations was conducted. Time and berberine treatment had an impact on RTA in HCT 116. RTA was discovered to be positively and negatively correlated to 14 and 2 metabolites, respectively. Glutamic acid was consistently found correlated to RTA. Other four metabolites, i.e., MG(14:0), [3-[hydroxy(phosphonooxy)phosphoryl]oxyphenyl] phosphono hydrogen phosphate), (3S,6S)-6-[[(3S,6R)-6-[(2S,3S,5S)-2,5-diiodo-4-methoxy-6-methyloxan-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid, and 1-[5-O-(5'-adenylyloxyphosphonyl)-beta-D-ribofuranosyl]-5-amino-1H-imidazole-4-carboxamide, were newly discovered to be connected to RTA in HCT 116. Four metabolic pathways that majorly affected shared glutamic acid and glutamine. Nitrogen metabolism, D-glutamine and D-glutamate metabolism, glyoxylate and dicarboxylate metabolism, and aminoacyl-tRNA biosynthesis have been identified to be associated with RTA. Network analyses hinted that glutamic acid was also associated with oxidative stress mechanism. The multiple roles glutamic acid acted in diverse metabolic pathways and interaction networks emphasized the importance of glutamic acid in HCT 116 regarding RTA. This research establishes the association between RTA and several chosen RNAs, proteins, metabolites, and oxidative stress mechanisms, consequential in morphological alteration in HCT 116, to expand the knowledge of the intricate biological relationships and telomerase mechanism in CRC.

{"title":"An Integrative Approach Using Molecular and Metabolomic Studies Reveals the Connection of Glutamic Acid with Telomerase and Oxidative Stress in Berberine-Treated Colorectal Cancer Cell Line HCT 116.","authors":"Muhammad Azizan Samad, Arief Izzairy Zamani, Nazia Abdul Majid, Saiful Anuar Karsani, Syarul Nataqain Baharum, Jamilah Syafawati Yaacob, Mohd Zuwairi Saiman","doi":"10.1007/s12010-025-05200-9","DOIUrl":"https://doi.org/10.1007/s12010-025-05200-9","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is one of the common deadliest cancers worldwide. In Malaysia, the numbers of new CRC cases were horrific and worrisome. Telomerase is both prognostic indicator and predictor of carcinogenesis in CRC patients. Berberine, a telomerase inhibitor, was used in clinical trials and metabolomic studies; however, the association of telomerase with metabolites and metabolic pathways was not fully understood. Colorectal cancer cell line HCT 116 was cultured and treated with 10.54 µg/mL berberine. The cells were harvested at different time points to conduct subsequent analyses. The methods used in this research were real time-polymerase chain reaction (RT-PCR) to assess RNA expressions; Western blot to determine protein levels; TELOTAGGG Telomerase PCR ELISA to determine relative telomerase activity (RTA); 4',6-diamidino-2-phenylindole (DAPI) staining to determine percentage of nuclei damage; fluorescence microscopy for cell area; spectrophotometric potassium iodide assay for intracellular hydrogen peroxide concentration [H<sub>2</sub>O<sub>2</sub>]; as well as liquid chromatography mass spectrometry (LCMS) and tandem mass spectrometry (MS/MS) to investigate the intracellular metabolites. Partial least square-discriminant analysis (PLS-DA) score plot exhibited an improved separation compared to principal component analysis (PCA) when metabolomic data analysis of HCT 116 at various berberine treatment durations was conducted. Time and berberine treatment had an impact on RTA in HCT 116. RTA was discovered to be positively and negatively correlated to 14 and 2 metabolites, respectively. Glutamic acid was consistently found correlated to RTA. Other four metabolites, i.e., MG(14:0), [3-[hydroxy(phosphonooxy)phosphoryl]oxyphenyl] phosphono hydrogen phosphate), (3S,6S)-6-[[(3S,6R)-6-[(2S,3S,5S)-2,5-diiodo-4-methoxy-6-methyloxan-3-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid, and 1-[5-O-(5'-adenylyloxyphosphonyl)-beta-D-ribofuranosyl]-5-amino-1H-imidazole-4-carboxamide, were newly discovered to be connected to RTA in HCT 116. Four metabolic pathways that majorly affected shared glutamic acid and glutamine. Nitrogen metabolism, D-glutamine and D-glutamate metabolism, glyoxylate and dicarboxylate metabolism, and aminoacyl-tRNA biosynthesis have been identified to be associated with RTA. Network analyses hinted that glutamic acid was also associated with oxidative stress mechanism. The multiple roles glutamic acid acted in diverse metabolic pathways and interaction networks emphasized the importance of glutamic acid in HCT 116 regarding RTA. This research establishes the association between RTA and several chosen RNAs, proteins, metabolites, and oxidative stress mechanisms, consequential in morphological alteration in HCT 116, to expand the knowledge of the intricate biological relationships and telomerase mechanism in CRC.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Subtypes and Diagnostic Markers Related to Necroptosis in Sepsis.
IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-26 DOI: 10.1007/s12010-025-05201-8
Sen Peng, Ning Meng, Xia Xie, Bing Zhu, Bing Wang

Sepsis is a serious systemic infection with a high mortality rate. More and more evidence suggested that necroptosis plays a crucial role in the pathogenesis and progression of sepsis. This study aimed to elucidate the biological function and clinical significance of necroptosis in sepsis, and identify new potential biomarkers to improve the diagnosis and treatment of sepsis. Firstly, we identified 40 differentially expressed necroptosis related genes (DENRGs). Subsequently, a protein interaction (PPI) network of 40 DENRGs was constructed. Based on the key NRGs in the PPI network, the LASSO algorithm was used to screen eight diagnostic-related NRGs in sepsis, and a diagnostic model and risk score were constructed. The ROC analysis results indicated that the eight NRGs diagnostic model has good diagnostic performance (AUC = 0.955). There is a significant difference in risks core between normal samples and sepsis patients. The results of immune infiltration analysis showed that eight diagnostic-related NRGs were significantly correlated with multiple immune cells. Given the clinical significance of necroptosis in sepsis, we identified two molecular subtypes of sepsis based on eight NRGs. The necroptosis score of subtype 1 is significantly lower than that of subtype 2, while the immune score of subtype 1 is significantly higher than that of subtype 2. In summary, we developed and validated a diagnostic model and risk score based on eight NRGs, and identified two completely different subtypes associated with sepsis. Our research may provide new insights into the mechanisms of necroptosis in sepsis and the identification of potential biomarkers.

{"title":"Identification of Subtypes and Diagnostic Markers Related to Necroptosis in Sepsis.","authors":"Sen Peng, Ning Meng, Xia Xie, Bing Zhu, Bing Wang","doi":"10.1007/s12010-025-05201-8","DOIUrl":"https://doi.org/10.1007/s12010-025-05201-8","url":null,"abstract":"<p><p>Sepsis is a serious systemic infection with a high mortality rate. More and more evidence suggested that necroptosis plays a crucial role in the pathogenesis and progression of sepsis. This study aimed to elucidate the biological function and clinical significance of necroptosis in sepsis, and identify new potential biomarkers to improve the diagnosis and treatment of sepsis. Firstly, we identified 40 differentially expressed necroptosis related genes (DENRGs). Subsequently, a protein interaction (PPI) network of 40 DENRGs was constructed. Based on the key NRGs in the PPI network, the LASSO algorithm was used to screen eight diagnostic-related NRGs in sepsis, and a diagnostic model and risk score were constructed. The ROC analysis results indicated that the eight NRGs diagnostic model has good diagnostic performance (AUC = 0.955). There is a significant difference in risks core between normal samples and sepsis patients. The results of immune infiltration analysis showed that eight diagnostic-related NRGs were significantly correlated with multiple immune cells. Given the clinical significance of necroptosis in sepsis, we identified two molecular subtypes of sepsis based on eight NRGs. The necroptosis score of subtype 1 is significantly lower than that of subtype 2, while the immune score of subtype 1 is significantly higher than that of subtype 2. In summary, we developed and validated a diagnostic model and risk score based on eight NRGs, and identified two completely different subtypes associated with sepsis. Our research may provide new insights into the mechanisms of necroptosis in sepsis and the identification of potential biomarkers.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fermentation-Mediated Enhancement of Safety, Thermal Stability, Bioaccessibility, and Health-Promoting Potential of Watermelon Peel Polyphenol Extract.
IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-26 DOI: 10.1007/s12010-025-05185-5
Lam Vi Chau, Huyen Ngoc Nguyen, Thang Minh Le, Quynh Lan Ngo, Thuy Nguyen Huong Tran, Ngoc Thanh Vu

Fruit wastes contain significant levels of polyphenols with various health-related effects. However, polyphenols have several limitations that hinder their industrial applications. In this study, solid-state fermentation was used as a pre-extraction treatment to not only increase the extraction efficiency of polyphenols from watermelon peel (WP), but also to overcome their drawbacks and improve other properties. Specifically, optimal conditions in the integrated process, fermentation and extraction, were determined by response surface methodology for the highest polyphenol recovery from WP. The post-process extract showed a dramatic improvement in polyphenol content with an increase in various phenolic compounds determined by UHPLC-MS/MS and a significant decrease in cytotoxicity. In addition, two limitations of polyphenols, low stability and bioaccessibility, were significantly improved. Various health potentials of WP were also enhanced: antioxidant (radical scavenging and ferric reduction), anti-inflammatory (inhibition of heat-induced hemolysis, protein denaturation and protease), selectively antibacterial (anti-growth, anti-survival and anti-biofilm for pathogenic bacteria), prebiotic (promotion of probiotic growth and biofilm formation), anti-diabetic (α-glucosidase and α-amylase inhibition), and anti-melanogenic (tyrosinase inhibition). The mechanisms of enzyme inhibition for anti-diabetic and anti-melanogenic capacity were further elucidated by enzyme kinetic studies. Overall, the study suggests an efficient process to convert WP into high-value products with prospects in the circular economy.

{"title":"Fermentation-Mediated Enhancement of Safety, Thermal Stability, Bioaccessibility, and Health-Promoting Potential of Watermelon Peel Polyphenol Extract.","authors":"Lam Vi Chau, Huyen Ngoc Nguyen, Thang Minh Le, Quynh Lan Ngo, Thuy Nguyen Huong Tran, Ngoc Thanh Vu","doi":"10.1007/s12010-025-05185-5","DOIUrl":"https://doi.org/10.1007/s12010-025-05185-5","url":null,"abstract":"<p><p>Fruit wastes contain significant levels of polyphenols with various health-related effects. However, polyphenols have several limitations that hinder their industrial applications. In this study, solid-state fermentation was used as a pre-extraction treatment to not only increase the extraction efficiency of polyphenols from watermelon peel (WP), but also to overcome their drawbacks and improve other properties. Specifically, optimal conditions in the integrated process, fermentation and extraction, were determined by response surface methodology for the highest polyphenol recovery from WP. The post-process extract showed a dramatic improvement in polyphenol content with an increase in various phenolic compounds determined by UHPLC-MS/MS and a significant decrease in cytotoxicity. In addition, two limitations of polyphenols, low stability and bioaccessibility, were significantly improved. Various health potentials of WP were also enhanced: antioxidant (radical scavenging and ferric reduction), anti-inflammatory (inhibition of heat-induced hemolysis, protein denaturation and protease), selectively antibacterial (anti-growth, anti-survival and anti-biofilm for pathogenic bacteria), prebiotic (promotion of probiotic growth and biofilm formation), anti-diabetic (α-glucosidase and α-amylase inhibition), and anti-melanogenic (tyrosinase inhibition). The mechanisms of enzyme inhibition for anti-diabetic and anti-melanogenic capacity were further elucidated by enzyme kinetic studies. Overall, the study suggests an efficient process to convert WP into high-value products with prospects in the circular economy.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tanshinone IIA Suppresses the Proliferation of MGC803 Cells by Disrupting Glycolysis Under Anaerobic Conditions.
IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-26 DOI: 10.1007/s12010-025-05205-4
Zhe Liu, Yi Wang, Xia Gao, Jingwen Ma, Chan Hui, Chao Wang, Yanfei Liu, Yao Huang, Yuting Wen

This study aimed to investigate how Tanshinone IIA (Tan IIA) affects gastric cancer cell (MGC803) proliferation under anaerobic conditions, which are linked to drug resistance and tumor growth. The proliferation of MGC803 cells under both aerobic and anaerobic conditions in response to Tan IIA was assessed using the Cell Counting Kit-8 (CCK-8) assay. To elucidate the molecular mechanisms underlying these effects, proteomics analysis was performed following treatment with 50 µmol/L Tan IIA, focusing on alterations in Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Additionally, in vitro evaluations such as glucose uptake, lactate production, and adenosine triphosphate (ATP) synthesis were employed to validate the alterations in glycolytic activity observed in anaerobic cells treated with Tan IIA. Under anaerobic conditions, Tan IIA enhanced the inhibitory effect on the proliferation of MGC803 cells. Proteomics data revealed that a total of 6629 proteins were identified and quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS), with 2604 proteins exhibiting significant changes (fold change > 2 or < 0.5, P < 0.05). KEGG analysis highlighted the perturbation of glycolytic pathway by Tan IIA under anaerobic conditions, accompanied by reduced glucose uptake, lactate production, and ATP synthesis. Additionally, a downregulation of glycolytic enzyme expression was observed at both the mRNA and protein levels, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), lactate dehydrogenase A (LDHA), phosphofructokinase 2 (PFKP), and pyruvate dehydrogenase (PDH). Tan IIA inhibits the proliferation of MGC803 cells by disrupting the glycolysis under anaerobic conditions, offering a potential treatment for anaerobiosis-resistant solid tumors.

{"title":"Tanshinone IIA Suppresses the Proliferation of MGC803 Cells by Disrupting Glycolysis Under Anaerobic Conditions.","authors":"Zhe Liu, Yi Wang, Xia Gao, Jingwen Ma, Chan Hui, Chao Wang, Yanfei Liu, Yao Huang, Yuting Wen","doi":"10.1007/s12010-025-05205-4","DOIUrl":"https://doi.org/10.1007/s12010-025-05205-4","url":null,"abstract":"<p><p>This study aimed to investigate how Tanshinone IIA (Tan IIA) affects gastric cancer cell (MGC803) proliferation under anaerobic conditions, which are linked to drug resistance and tumor growth. The proliferation of MGC803 cells under both aerobic and anaerobic conditions in response to Tan IIA was assessed using the Cell Counting Kit-8 (CCK-8) assay. To elucidate the molecular mechanisms underlying these effects, proteomics analysis was performed following treatment with 50 µmol/L Tan IIA, focusing on alterations in Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Additionally, in vitro evaluations such as glucose uptake, lactate production, and adenosine triphosphate (ATP) synthesis were employed to validate the alterations in glycolytic activity observed in anaerobic cells treated with Tan IIA. Under anaerobic conditions, Tan IIA enhanced the inhibitory effect on the proliferation of MGC803 cells. Proteomics data revealed that a total of 6629 proteins were identified and quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS), with 2604 proteins exhibiting significant changes (fold change > 2 or < 0.5, P < 0.05). KEGG analysis highlighted the perturbation of glycolytic pathway by Tan IIA under anaerobic conditions, accompanied by reduced glucose uptake, lactate production, and ATP synthesis. Additionally, a downregulation of glycolytic enzyme expression was observed at both the mRNA and protein levels, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), lactate dehydrogenase A (LDHA), phosphofructokinase 2 (PFKP), and pyruvate dehydrogenase (PDH). Tan IIA inhibits the proliferation of MGC803 cells by disrupting the glycolysis under anaerobic conditions, offering a potential treatment for anaerobiosis-resistant solid tumors.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Evaluation and Optimization of the Different Process Parameters of Mild Acid Pretreatment of Waste Lignocellulosic Biomass for Enhanced Energy Procreation. 更正:评估和优化废木质纤维素生物质弱酸预处理的不同工艺参数,以提高能源产出。
IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-24 DOI: 10.1007/s12010-025-05206-3
Uma Kumari, Pratibha Gupta
{"title":"Correction to: Evaluation and Optimization of the Different Process Parameters of Mild Acid Pretreatment of Waste Lignocellulosic Biomass for Enhanced Energy Procreation.","authors":"Uma Kumari, Pratibha Gupta","doi":"10.1007/s12010-025-05206-3","DOIUrl":"https://doi.org/10.1007/s12010-025-05206-3","url":null,"abstract":"","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Applied Biochemistry and Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1