Physiological regulation of oral saliva ion composition and flow rate are not coupled in healthy humans-Partial revision of our current knowledge required.
Gerald Schwerdt, Marie-Christin Schulz, Michael Kopf, Sigrid Mildenberger, Sarah Reime, Michael Gekle
{"title":"Physiological regulation of oral saliva ion composition and flow rate are not coupled in healthy humans-Partial revision of our current knowledge required.","authors":"Gerald Schwerdt, Marie-Christin Schulz, Michael Kopf, Sigrid Mildenberger, Sarah Reime, Michael Gekle","doi":"10.1007/s00424-024-03025-9","DOIUrl":null,"url":null,"abstract":"<p><p>Appropriate composition of oral saliva is essential for a healthy milieu that protects mucosa and teeth. Only few studies, with small sample numbers, investigated physiological saliva ion composition in humans. We determined saliva ion composition in a sufficiently large cohort of healthy adults and analyzed the effect of physiological stimulation. We collected saliva from 102 adults under non-stimulated and physiologically stimulated conditions (chewing). Individual flow rates, pH, osmolality, Na<sup>+</sup>, K<sup>+</sup>, Cl<sup>-</sup>, and HCO<sub>3</sub><sup>-</sup> concentrations under both conditions as well as the individual changes due to stimulation (Δvalues) were determined. Non-stimulated saliva was hypoosmolal and acidic. Na<sup>+</sup>, Cl<sup>-</sup>, and HCO<sub>3</sub><sup>-</sup> concentrations remained well below physiological plasma values, whereas K<sup>+</sup> concentrations exceeded plasma values more than twofold. Stimulation resulted in a doubling of flow rates and substantial increases in pH, HCO<sub>3</sub><sup>-</sup>, and Na<sup>+</sup> concentrations. Overall, stimulation did not considerably affect osmolality nor K<sup>+</sup> or Cl<sup>-</sup> concentrations of saliva. An in-depth analysis of stimulation effects, using individual Δvalues, showed no correlation of Δflow rate with Δion concentrations, indicating independent regulation of acinar volume and ductal ion transport. Stimulation-induced Δ[Na<sup>+</sup>] correlated with Δ[HCO<sub>3</sub><sup>-</sup>] and Δ[Cl<sup>-</sup>] but not with Δ[K<sup>+</sup>], indicating common regulation of ductal Na<sup>+</sup>, Cl<sup>-</sup>, and HCO<sub>3</sub><sup>-</sup> transport. We present a robust data set of human oral saliva ion composition in healthy adults and functional insights into physiological stimulation. Our data show (i) that flow-dependence exists for Na<sup>+</sup> and HCO<sub>3</sub><sup>-</sup> but not for K<sup>+</sup> and Cl<sup>-</sup> concentrations, (ii) osmolality is flow-independent, (iii) regulation of Na<sup>+</sup>, Cl<sup>-</sup>, and HCO<sub>3</sub><sup>-</sup> transport is coupled, (iv) regulation of flow rate and ion concentrations are independent and (v) spatially separated between acini and ducts, respectively.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-024-03025-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Appropriate composition of oral saliva is essential for a healthy milieu that protects mucosa and teeth. Only few studies, with small sample numbers, investigated physiological saliva ion composition in humans. We determined saliva ion composition in a sufficiently large cohort of healthy adults and analyzed the effect of physiological stimulation. We collected saliva from 102 adults under non-stimulated and physiologically stimulated conditions (chewing). Individual flow rates, pH, osmolality, Na+, K+, Cl-, and HCO3- concentrations under both conditions as well as the individual changes due to stimulation (Δvalues) were determined. Non-stimulated saliva was hypoosmolal and acidic. Na+, Cl-, and HCO3- concentrations remained well below physiological plasma values, whereas K+ concentrations exceeded plasma values more than twofold. Stimulation resulted in a doubling of flow rates and substantial increases in pH, HCO3-, and Na+ concentrations. Overall, stimulation did not considerably affect osmolality nor K+ or Cl- concentrations of saliva. An in-depth analysis of stimulation effects, using individual Δvalues, showed no correlation of Δflow rate with Δion concentrations, indicating independent regulation of acinar volume and ductal ion transport. Stimulation-induced Δ[Na+] correlated with Δ[HCO3-] and Δ[Cl-] but not with Δ[K+], indicating common regulation of ductal Na+, Cl-, and HCO3- transport. We present a robust data set of human oral saliva ion composition in healthy adults and functional insights into physiological stimulation. Our data show (i) that flow-dependence exists for Na+ and HCO3- but not for K+ and Cl- concentrations, (ii) osmolality is flow-independent, (iii) regulation of Na+, Cl-, and HCO3- transport is coupled, (iv) regulation of flow rate and ion concentrations are independent and (v) spatially separated between acini and ducts, respectively.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.