Stan P Heath, Veronica C Hermanns, Maha Coucha, Mohammed Abdelsaid
{"title":"SARS-CoV-2 Spike Protein Exacerbates Thromboembolic Cerebrovascular Complications in Humanized ACE2 Mouse Model.","authors":"Stan P Heath, Veronica C Hermanns, Maha Coucha, Mohammed Abdelsaid","doi":"10.1007/s12975-024-01301-5","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 increases the risk for acute ischemic stroke, yet the molecular mechanisms are unclear and remain unresolved medical challenges. We hypothesize that the SARS-CoV-2 spike protein exacerbates stroke and cerebrovascular complications by increasing coagulation and decreasing fibrinolysis by disrupting the renin-angiotensin-aldosterone system (RAAS). A thromboembolic model was induced in humanized ACE2 knock-in mice after one week of SARS-CoV-2 spike protein injection. hACE2 mice were treated with Losartan, an angiotensin receptor (AT<sub>1</sub>R) blocker, immediately after spike protein injection. Cerebral blood flow and infarct size were compared between groups. Vascular-contributes to cognitive impairments and dementia was assessed using a Novel object recognition test. Tissue factor-III and plasminogen activator inhibitor-1 were measured using immunoblotting to assess coagulation and fibrinolysis. Human brain microvascular endothelial cells (HBMEC) were exposed to hypoxia with/without SARS-CoV-2 spike protein to mimic ischemic conditions and assessed for inflammation, RAAS balance, coagulation, and fibrinolysis. Our results showed that the SARS-CoV-2 spike protein caused an imbalance in the RAAS that increased the inflammatory signal and decreased the RAAS protective arm. SARS-CoV-2 spike protein increased coagulation and decreased fibrinolysis when coincident with ischemic insult, which was accompanied by a decrease in cerebral blood flow, an increase in neuronal death, and a decline in cognitive function. Losartan treatment restored RAAS balance and reduced spike protein-induced effects. SARS-CoV-2 spike protein exacerbates inflammation and hypercoagulation, leading to increased neurovascular damage and cognitive dysfunction. However, the AT<sub>1</sub>R blocker, Losartan, restored the RAAS balance and reduced COVID-19-induced thromboembolic cerebrovascular complications.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-024-01301-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
COVID-19 increases the risk for acute ischemic stroke, yet the molecular mechanisms are unclear and remain unresolved medical challenges. We hypothesize that the SARS-CoV-2 spike protein exacerbates stroke and cerebrovascular complications by increasing coagulation and decreasing fibrinolysis by disrupting the renin-angiotensin-aldosterone system (RAAS). A thromboembolic model was induced in humanized ACE2 knock-in mice after one week of SARS-CoV-2 spike protein injection. hACE2 mice were treated with Losartan, an angiotensin receptor (AT1R) blocker, immediately after spike protein injection. Cerebral blood flow and infarct size were compared between groups. Vascular-contributes to cognitive impairments and dementia was assessed using a Novel object recognition test. Tissue factor-III and plasminogen activator inhibitor-1 were measured using immunoblotting to assess coagulation and fibrinolysis. Human brain microvascular endothelial cells (HBMEC) were exposed to hypoxia with/without SARS-CoV-2 spike protein to mimic ischemic conditions and assessed for inflammation, RAAS balance, coagulation, and fibrinolysis. Our results showed that the SARS-CoV-2 spike protein caused an imbalance in the RAAS that increased the inflammatory signal and decreased the RAAS protective arm. SARS-CoV-2 spike protein increased coagulation and decreased fibrinolysis when coincident with ischemic insult, which was accompanied by a decrease in cerebral blood flow, an increase in neuronal death, and a decline in cognitive function. Losartan treatment restored RAAS balance and reduced spike protein-induced effects. SARS-CoV-2 spike protein exacerbates inflammation and hypercoagulation, leading to increased neurovascular damage and cognitive dysfunction. However, the AT1R blocker, Losartan, restored the RAAS balance and reduced COVID-19-induced thromboembolic cerebrovascular complications.
期刊介绍:
Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma.
Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.