Roles and Potential Mechanisms of Endothelial Cell-Derived Extracellular Vesicles in Ischemic Stroke.

IF 3.8 2区 医学 Q1 CLINICAL NEUROLOGY Translational Stroke Research Pub Date : 2025-02-07 DOI:10.1007/s12975-025-01334-4
Xinyuan Yu, Yiwei Huang, Changxin Li
{"title":"Roles and Potential Mechanisms of Endothelial Cell-Derived Extracellular Vesicles in Ischemic Stroke.","authors":"Xinyuan Yu, Yiwei Huang, Changxin Li","doi":"10.1007/s12975-025-01334-4","DOIUrl":null,"url":null,"abstract":"<p><p>The etiology and mechanisms of ischemic stroke are complex, encompassing a variety of pathological processes including atherosclerosis, energy failure, neuroinflammation, blood-brain barrier damage, abnormal glial cell activation, and neuronal edema and necrosis. Endothelial cell-derived extracellular vesicles have garnered significant attention in various diseases, including ischemic stroke, owing to their widespread distribution, rich content, diverse functional sites, low immunogenicity, and ability to cross the blood-brain barrier. This study reviewed the current status of research on endothelial cell-derived extracellular vesicles and their roles and potential mechanisms in ischemic stroke. It aimed to elucidate the potential of these extracellular vesicles for clinical translation related to ischemic stroke, thereby providing new strategies and directions for treating patients with stroke. The findings indicated that endothelial cell-derived extracellular vesicles reduce the occurrence of stroke and improve post-stroke ischemic injury and prognosis through various mechanisms. Although studies have demonstrated the significant potential of endothelial cell-derived extracellular vesicles in treating ischemic stroke, their clinical translation remains challenging. Further research is needed to elucidate the specific roles of endothelial cell-derived extracellular vesicles in ischemic stroke, using additional in vitro or animal models. This will enable a more comprehensive assessment of the benefits and risks of endothelial cell-derived extracellular vesicles, thereby facilitating their clinical translation.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-025-01334-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The etiology and mechanisms of ischemic stroke are complex, encompassing a variety of pathological processes including atherosclerosis, energy failure, neuroinflammation, blood-brain barrier damage, abnormal glial cell activation, and neuronal edema and necrosis. Endothelial cell-derived extracellular vesicles have garnered significant attention in various diseases, including ischemic stroke, owing to their widespread distribution, rich content, diverse functional sites, low immunogenicity, and ability to cross the blood-brain barrier. This study reviewed the current status of research on endothelial cell-derived extracellular vesicles and their roles and potential mechanisms in ischemic stroke. It aimed to elucidate the potential of these extracellular vesicles for clinical translation related to ischemic stroke, thereby providing new strategies and directions for treating patients with stroke. The findings indicated that endothelial cell-derived extracellular vesicles reduce the occurrence of stroke and improve post-stroke ischemic injury and prognosis through various mechanisms. Although studies have demonstrated the significant potential of endothelial cell-derived extracellular vesicles in treating ischemic stroke, their clinical translation remains challenging. Further research is needed to elucidate the specific roles of endothelial cell-derived extracellular vesicles in ischemic stroke, using additional in vitro or animal models. This will enable a more comprehensive assessment of the benefits and risks of endothelial cell-derived extracellular vesicles, thereby facilitating their clinical translation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Translational Stroke Research
Translational Stroke Research CLINICAL NEUROLOGY-NEUROSCIENCES
CiteScore
13.80
自引率
4.30%
发文量
130
审稿时长
6-12 weeks
期刊介绍: Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma. Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.
期刊最新文献
Roles and Potential Mechanisms of Endothelial Cell-Derived Extracellular Vesicles in Ischemic Stroke. A Scoping Review of Preclinical Environmental Enrichment Protocols in Models of Poststroke to Set the Foundations for Translating the Paradigm to Clinical Settings. Glial Cell Reprogramming in Ischemic Stroke: A Review of Recent Advancements and Translational Challenges. Similarities in the Electrographic Patterns of Delayed Cerebral Infarction and Brain Death After Aneurysmal and Traumatic Subarachnoid Hemorrhage. Red Blood Cells in the Cerebrospinal Fluid Compartment After Subarachnoid Haemorrhage: Significance and Emerging Therapeutic Strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1