Deforming Patient-Specific Models of Vascular Anatomies to Represent Stent Implantation via Extended Position Based Dynamics.

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Engineering and Technology Pub Date : 2024-10-01 DOI:10.1007/s13239-024-00752-z
Jonathan Pham, Fanwei Kong, Doug L James, Jeffrey A Feinstein, Alison L Marsden
{"title":"Deforming Patient-Specific Models of Vascular Anatomies to Represent Stent Implantation via Extended Position Based Dynamics.","authors":"Jonathan Pham, Fanwei Kong, Doug L James, Jeffrey A Feinstein, Alison L Marsden","doi":"10.1007/s13239-024-00752-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Angioplasty with stent placement is a widely used treatment strategy for patients with stenotic blood vessels. However, it is often challenging to predict the outcomes of this procedure for individual patients. Image-based computational fluid dynamics (CFD) is a powerful technique for making these predictions. To perform CFD analysis of a stented vessel, a virtual model of the vessel must first be created. This model is typically made by manipulating two-dimensional contours of the vessel in its pre-stent state to reflect its post-stent shape. However, improper contour-editing can cause invalid geometric artifacts in the resulting mesh that then distort the subsequent CFD predictions. To address this limitation, we have developed a novel shape-editing method that deforms surface meshes of stenosed vessels to create stented models.</p><p><strong>Methods: </strong>Our method uses physics-based simulations via Extended Position Based Dynamics to guide these deformations. We embed an inflating stent inside a vessel and apply collision-generated forces to deform the vessel and expand its cross-section.</p><p><strong>Results: </strong>We demonstrate that this technique is feasible and applicable for a wide range of vascular anatomies, while yielding clinically compatible results. We also illustrate the ability to parametrically vary the stented shape and create models allowing CFD analyses.</p><p><strong>Conclusion: </strong>Our stenting method will help clinicians predict the hemodynamic results of stenting interventions and adapt treatments to achieve target outcomes for patients. It will also enable generation of synthetic data for data-intensive applications, such as machine learning, to support cardiovascular research endeavors.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-024-00752-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Angioplasty with stent placement is a widely used treatment strategy for patients with stenotic blood vessels. However, it is often challenging to predict the outcomes of this procedure for individual patients. Image-based computational fluid dynamics (CFD) is a powerful technique for making these predictions. To perform CFD analysis of a stented vessel, a virtual model of the vessel must first be created. This model is typically made by manipulating two-dimensional contours of the vessel in its pre-stent state to reflect its post-stent shape. However, improper contour-editing can cause invalid geometric artifacts in the resulting mesh that then distort the subsequent CFD predictions. To address this limitation, we have developed a novel shape-editing method that deforms surface meshes of stenosed vessels to create stented models.

Methods: Our method uses physics-based simulations via Extended Position Based Dynamics to guide these deformations. We embed an inflating stent inside a vessel and apply collision-generated forces to deform the vessel and expand its cross-section.

Results: We demonstrate that this technique is feasible and applicable for a wide range of vascular anatomies, while yielding clinically compatible results. We also illustrate the ability to parametrically vary the stented shape and create models allowing CFD analyses.

Conclusion: Our stenting method will help clinicians predict the hemodynamic results of stenting interventions and adapt treatments to achieve target outcomes for patients. It will also enable generation of synthetic data for data-intensive applications, such as machine learning, to support cardiovascular research endeavors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过扩展的基于位置的动力学,变形特定患者的血管解剖模型以表示支架植入。
目的:血管成形术加支架置入术是一种广泛应用于血管狭窄患者的治疗策略。然而,预测每个患者的手术效果往往具有挑战性。基于图像的计算流体动力学(CFD)是一种强大的预测技术。要对支架血管进行 CFD 分析,首先必须创建血管的虚拟模型。该模型通常是通过操作支架前血管的二维轮廓来反映支架后的形状。然而,不适当的轮廓编辑会导致生成的网格中出现无效的几何假象,进而扭曲后续的 CFD 预测。为了解决这一局限性,我们开发了一种新颖的形状编辑方法,通过变形狭窄血管的表面网格来创建支架模型:方法:我们的方法通过基于扩展位置动力学的物理模拟来引导这些变形。我们在血管内嵌入一个充气支架,并应用碰撞产生的力使血管变形并扩大其横截面:结果:我们证明了这一技术的可行性,它适用于各种血管解剖结构,并能产生与临床相符的结果。我们还展示了根据参数改变支架形状和创建模型以进行 CFD 分析的能力:我们的支架植入方法将帮助临床医生预测支架介入治疗的血流动力学结果,并调整治疗方法以实现患者的目标疗效。它还能为机器学习等数据密集型应用生成合成数据,为心血管研究工作提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
期刊最新文献
Development of Novel 3D Spheroids for Discrete Subaortic Stenosis. On the Relative Effects of Wall and Intraluminal Thrombus Constitutive Material Properties in Abdominal Aortic Aneurysm Wall Stress. The Influence of Material Properties and Wall Thickness on Predicted Wall Stress in Ascending Aortic Aneurysms: A Finite Element Study. Activation of a Soft Robotic Left Ventricular Phantom Embedded in a Closed-Loop Cardiovascular Simulator: A Computational and Experimental Analysis. Design and Characterisation of a Novel Z-Shaped Inductor-Based Wireless Implantable Sensor for Surveillance of Abdominal Aortic Aneurysm Post-Endovascular Repair.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1