Warming triggers stomatal opening by enhancement of photosynthesis and ensuing guard cell CO2 sensing, whereas higher temperatures induce a photosynthesis‐uncoupled response

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2024-10-02 DOI:10.1111/nph.20121
Nattiwong Pankasem, Po‐Kai Hsu, Bryn N. K. Lopez, Peter J. Franks, Julian I. Schroeder
{"title":"Warming triggers stomatal opening by enhancement of photosynthesis and ensuing guard cell CO2 sensing, whereas higher temperatures induce a photosynthesis‐uncoupled response","authors":"Nattiwong Pankasem, Po‐Kai Hsu, Bryn N. K. Lopez, Peter J. Franks, Julian I. Schroeder","doi":"10.1111/nph.20121","DOIUrl":null,"url":null,"abstract":"Summary<jats:list list-type=\"bullet\"> <jats:list-item>Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied.</jats:list-item> <jats:list-item>We developed an approach for clamping leaf‐to‐air vapor pressure difference (VPD<jats:sub>leaf</jats:sub>) to fixed values, and recorded robust reversible warming‐induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO<jats:sub>2</jats:sub>, and the temperature‐sensitive proteins, Phytochrome B (phyB) and EARLY‐FLOWERING‐3 (ELF3).</jats:list-item> <jats:list-item>We confirmed that <jats:italic>phot1‐5/phot2‐1</jats:italic> leaves lacking blue‐light photoreceptors showed partially reduced warming‐induced stomatal opening. Furthermore, ABA‐biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly, <jats:italic>Arabidopsis</jats:italic> (dicot) and <jats:italic>Brachypodium distachyon</jats:italic> (monocot) mutants lacking guard cell CO<jats:sub>2</jats:sub> sensors and signaling mechanisms, including <jats:italic>ht1</jats:italic>, <jats:italic>mpk12/mpk4‐gc</jats:italic>, and <jats:italic>cbc1/cbc2</jats:italic> abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO<jats:sub>2</jats:sub>). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis.</jats:list-item> <jats:list-item>We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO<jats:sub>2</jats:sub> assimilation and stomatal CO<jats:sub>2</jats:sub> sensing. Additionally, increasing heat stress functions via a distinct photosynthesis‐uncoupled stomatal opening pathway.</jats:list-item> </jats:list>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"203 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20121","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Summary Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied. We developed an approach for clamping leaf‐to‐air vapor pressure difference (VPDleaf) to fixed values, and recorded robust reversible warming‐induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO2, and the temperature‐sensitive proteins, Phytochrome B (phyB) and EARLY‐FLOWERING‐3 (ELF3). We confirmed that phot1‐5/phot2‐1 leaves lacking blue‐light photoreceptors showed partially reduced warming‐induced stomatal opening. Furthermore, ABA‐biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly, Arabidopsis (dicot) and Brachypodium distachyon (monocot) mutants lacking guard cell CO2 sensors and signaling mechanisms, including ht1, mpk12/mpk4‐gc, and cbc1/cbc2 abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO2). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis. We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO2 assimilation and stomatal CO2 sensing. Additionally, increasing heat stress functions via a distinct photosynthesis‐uncoupled stomatal opening pathway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
升温通过增强光合作用和随后的防护细胞二氧化碳感应来触发气孔开放,而较高的温度则诱发光合作用不耦合的反应
摘要 植物通过控制气孔孔径来整合环境刺激,优化光合作用与水分损失。然而,对气孔对温度升高的反应及其潜在的分子遗传机制的研究仍然较少。我们开发了一种方法,将叶片与空气的水汽压差(VPDleaf)箝位到固定值,并记录了完整植物中稳健的可逆升温诱导的气孔开放。我们分析了对蓝光、脱落酸(ABA)、二氧化碳以及温度敏感蛋白植物色素B(phyB)和早期开花-3(ELF3)的保卫细胞信号通路受损的突变体的气孔温度反应。我们证实,缺乏蓝光光感受器的 phot1-5/phot2-1 叶片在部分程度上减少了升温诱导的气孔开放。此外,ABA 生物合成、phyB 和 ELF3 对气孔升温反应并不重要。令人震惊的是,拟南芥(双子叶植物)和Brachypodium distachyon(单子叶植物)的突变体缺乏保卫细胞二氧化碳传感器和信号机制,包括ht1、mpk12/mpk4-gc和cbc1/cbc2,这些突变体取消了气孔升温反应,表明在不同的植物品系中存在一种保守的机制。此外,升温迅速刺激光合作用,导致细胞间(CO2)减少。有趣的是,热胁迫的进一步增强导致气孔开放与光合作用脱钩。我们提供的遗传学和生理学证据表明,气孔变暖反应是由增加的二氧化碳同化和气孔二氧化碳感应触发的。此外,热胁迫的增加是通过与光合作用不耦合的气孔开放途径发挥作用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
Meta-analysis reveals globally sourced commercial mycorrhizal inoculants fall short Trade-offs involved in the choice of pot vs field experiments Herbicidal interference: glyphosate drives both the ecology and evolution of plant–herbivore interactions Matthew Naish A nuclear phylogenomic tree of grasses (Poaceae) recovers current classification despite gene tree incongruence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1