Anthony L. Cheng, Erica R. H. Fuchs, Jeremy J. Michalek
{"title":"US industrial policy may reduce electric vehicle battery supply chain vulnerabilities and influence technology choice","authors":"Anthony L. Cheng, Erica R. H. Fuchs, Jeremy J. Michalek","doi":"10.1038/s41560-024-01649-w","DOIUrl":null,"url":null,"abstract":"<p>We analyse US Inflation Reduction Act (IRA) incentives for electric vehicle battery technology and supply chain decisions. We find that the total value of available credits exceeds estimated battery production costs, but qualifying for all available credits is difficult. IRA cell and module credits alone bring estimated US battery production costs in line with China. In contrast, IRA material extraction and processing credits are modest. IRA’s end-user purchase credits are restricted to electric vehicles whose battery supply chains exclude foreign entities of concern, including China. This incentivizes diversification of the entire supply chain, but leasing avoids these restrictions. Lithium iron phosphate batteries have potential to more easily reduce supply chain vulnerabilities and qualify for incentives, but they have smaller total available incentives than nickel/cobalt-based batteries. Overall, the IRA primarily incentivizes downstream battery manufacturing diversification, whereas upstream supply implications depend on automaker responses to foreign entities of concern and leasing rules.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"22 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-024-01649-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
We analyse US Inflation Reduction Act (IRA) incentives for electric vehicle battery technology and supply chain decisions. We find that the total value of available credits exceeds estimated battery production costs, but qualifying for all available credits is difficult. IRA cell and module credits alone bring estimated US battery production costs in line with China. In contrast, IRA material extraction and processing credits are modest. IRA’s end-user purchase credits are restricted to electric vehicles whose battery supply chains exclude foreign entities of concern, including China. This incentivizes diversification of the entire supply chain, but leasing avoids these restrictions. Lithium iron phosphate batteries have potential to more easily reduce supply chain vulnerabilities and qualify for incentives, but they have smaller total available incentives than nickel/cobalt-based batteries. Overall, the IRA primarily incentivizes downstream battery manufacturing diversification, whereas upstream supply implications depend on automaker responses to foreign entities of concern and leasing rules.
我们分析了美国《通货膨胀削减法案》(IRA)对电动汽车电池技术和供应链决策的激励作用。我们发现,可用信用额度的总价值超过了估计的电池生产成本,但要获得所有可用信用额度却很困难。仅 IRA 电池和模块抵免就能使美国电池生产成本与中国持平。相比之下,IRA 的材料提取和加工抵免额度并不高。IRA 的最终用户购买信用额度仅限于电池供应链不包括包括中国在内的外国相关实体的电动汽车。这激励了整个供应链的多样化,但租赁避免了这些限制。磷酸铁锂电池有可能更容易减少供应链漏洞,并符合激励条件,但与镍基/钴基电池相比,其可用激励总额较小。总体而言,《综合减排法》主要激励下游电池制造多样化,而上游供应的影响则取决于汽车制造商对外国相关实体和租赁规则的反应。
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.