Growth of Ta-doped SnO2 on GaN as a UV-transparent conducting electrode and band alignment properties of the heterojunction

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-10-01 DOI:10.1063/5.0213093
Lu Yang, Ziqian Sheng, Siliang Kuang, Wenjing Xu, Yaxin He, Xu Zhang, Xiangyu Xu, Kelvin H. L. Zhang
{"title":"Growth of Ta-doped SnO2 on GaN as a UV-transparent conducting electrode and band alignment properties of the heterojunction","authors":"Lu Yang, Ziqian Sheng, Siliang Kuang, Wenjing Xu, Yaxin He, Xu Zhang, Xiangyu Xu, Kelvin H. L. Zhang","doi":"10.1063/5.0213093","DOIUrl":null,"url":null,"abstract":"GaN-based ultraviolet light emitting diodes (UV LEDs) have attracted considerable attention in recent years and are required in various applications such as healthcare, light illumination, and optical communication. However, the limited UV transparency of the electrodes like indium-doped tin oxide has hindered the external quantum efficiency of current UV LEDs. In this work, we present the growth of UV-transparent Ta-doped SnO2 (TTO) thin films on GaN as a promising UV-transparent electrode for LEDs. TTO thin films with a thickness of 200 nm exhibit optical transmission exceeding 80% at the wavelength of 300 nm, with a low resistivity of 2.5 × 10−4 Ω·cm and a low contact resistance of 1.7 × 10−2 Ω cm2 to n-type GaN. High-resolution x-ray photoemission spectra were employed to reveal insight into the electronic structure of TTO and the interfacial band alignment of TTO/GaN heterojunction. The wide optical bandgap (∼4.6 eV) and high UV transparency of TTO films stem from a significant Burstein–Moss shift due to degenerate doping, giving rise to metal-like characteristics and a small barrier height at the interface of TTO/GaN. These findings imply the origin of low contact resistivity of TTO to n-type GaN and may be applicable to the development of UV-transparent electrodes of optoelectronic devices.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0213093","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

GaN-based ultraviolet light emitting diodes (UV LEDs) have attracted considerable attention in recent years and are required in various applications such as healthcare, light illumination, and optical communication. However, the limited UV transparency of the electrodes like indium-doped tin oxide has hindered the external quantum efficiency of current UV LEDs. In this work, we present the growth of UV-transparent Ta-doped SnO2 (TTO) thin films on GaN as a promising UV-transparent electrode for LEDs. TTO thin films with a thickness of 200 nm exhibit optical transmission exceeding 80% at the wavelength of 300 nm, with a low resistivity of 2.5 × 10−4 Ω·cm and a low contact resistance of 1.7 × 10−2 Ω cm2 to n-type GaN. High-resolution x-ray photoemission spectra were employed to reveal insight into the electronic structure of TTO and the interfacial band alignment of TTO/GaN heterojunction. The wide optical bandgap (∼4.6 eV) and high UV transparency of TTO films stem from a significant Burstein–Moss shift due to degenerate doping, giving rise to metal-like characteristics and a small barrier height at the interface of TTO/GaN. These findings imply the origin of low contact resistivity of TTO to n-type GaN and may be applicable to the development of UV-transparent electrodes of optoelectronic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在氮化镓上生长掺杂钽的二氧化硒作为紫外透明导电电极及其异质结的带排列特性
近年来,氮化镓基紫外发光二极管(UV LED)备受关注,并被广泛应用于医疗保健、光照和光通信等领域。然而,掺铟锡氧化物等电极的紫外透明性有限,阻碍了当前紫外发光二极管的外部量子效率。在这项工作中,我们在氮化镓上生长了紫外透明的掺钽二氧化锡(TTO)薄膜,作为一种很有前景的 LED 紫外透明电极。厚度为 200 nm 的 TTO 薄膜在 300 nm 波长下的光透射率超过 80%,电阻率低至 2.5 × 10-4 Ω-cm,与 n 型 GaN 的接触电阻低至 1.7 × 10-2 Ω cm2。高分辨率 X 射线光发射光谱揭示了 TTO 的电子结构以及 TTO/GaN 异质结的界面带排列。TTO 薄膜的宽光带隙(∼4.6 eV)和高紫外透明性源于退行性掺杂导致的显著伯斯坦-莫斯偏移,从而在 TTO/GaN 的界面上产生了类似金属的特性和较小的势垒高度。这些发现暗示了 TTO 与 n 型氮化镓低接触电阻率的起源,并可能适用于开发光电设备的紫外透明电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
InP-based high-performance extended short wavelength p-B-n infrared photodetector with InGaAs/GaAsSb type-II superlattice absorption layer High conductivity coherently strained quantum well XHEMT heterostructures on AlN substrates with delta doping Dipropyl sulfide optimized buried interface to improve the performance of inverted perovskite solar cells Tunable luminous color of LEDs achieved through integrating reliable multilevel RRAM Toward utilizing scanning gate microscopy as a high-resolution probe of valley splitting in Si/SiGe heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1