Self-Matching Assembly of Chiral Gold Nanoparticles Leads to High Optical Asymmetry and Sensitive Detection of Adenosine Triphosphate.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-10-03 DOI:10.1021/acs.nanolett.4c03782
Ning-Ning Zhang, Mikhail Mychinko, Shu-Yang Gao, Linxiuzi Yu, Zhi-Li Shen, Liang Wang, Fei Peng, Zhonglin Wei, Zizhun Wang, Wei Zhang, Shoujun Zhu, Yang Yang, Tianmeng Sun, Luis M Liz-Marzán, Sara Bals, Kun Liu
{"title":"Self-Matching Assembly of Chiral Gold Nanoparticles Leads to High Optical Asymmetry and Sensitive Detection of Adenosine Triphosphate.","authors":"Ning-Ning Zhang, Mikhail Mychinko, Shu-Yang Gao, Linxiuzi Yu, Zhi-Li Shen, Liang Wang, Fei Peng, Zhonglin Wei, Zizhun Wang, Wei Zhang, Shoujun Zhu, Yang Yang, Tianmeng Sun, Luis M Liz-Marzán, Sara Bals, Kun Liu","doi":"10.1021/acs.nanolett.4c03782","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve chiral amplification, life uses small chiral molecules as building blocks to construct hierarchical chiral architectures that can realize advanced physiological functions. Inspired by the chiral amplification strategy of nature, we herein demonstrate that the chiral assembly of chiral gold nanorods (GNRs) leads to enhanced optical asymmetry factors (<i>g</i>-factors), up to 0.24. The assembly of chiral GNRs, dictated by structural self-matching, leads to <i>g</i>-factors with over 100-fold higher values than those of individual chiral GNRs, as confirmed by numerical simulations. Moreover, the efficient optical asymmetry of chiral GNR assemblies enables their application as highly sensitive sensors of adenosine triphosphate (ATP detection limit of 1.0 μM), with selectivity against adenosine diphosphate and adenosine monophosphate.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03782","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve chiral amplification, life uses small chiral molecules as building blocks to construct hierarchical chiral architectures that can realize advanced physiological functions. Inspired by the chiral amplification strategy of nature, we herein demonstrate that the chiral assembly of chiral gold nanorods (GNRs) leads to enhanced optical asymmetry factors (g-factors), up to 0.24. The assembly of chiral GNRs, dictated by structural self-matching, leads to g-factors with over 100-fold higher values than those of individual chiral GNRs, as confirmed by numerical simulations. Moreover, the efficient optical asymmetry of chiral GNR assemblies enables their application as highly sensitive sensors of adenosine triphosphate (ATP detection limit of 1.0 μM), with selectivity against adenosine diphosphate and adenosine monophosphate.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手性金纳米粒子的自匹配组装实现了高度光学不对称和灵敏的三磷酸腺苷检测。
为了实现手性放大,生命利用小手性分子作为构件来构建分层手性结构,从而实现先进的生理功能。受自然界手性放大策略的启发,我们在本文中证明,手性金纳米棒(GNRs)的手性组装可增强光学不对称系数(g-factors),最高可达 0.24。手性 GNR 的组装由结构自匹配决定,其 g 因子值比单个手性 GNR 的 g 因子值高出 100 多倍,这已得到数值模拟的证实。此外,手性 GNR 组件的高效光学不对称性使其能够用作高灵敏度的三磷酸腺苷传感器(ATP 检测限为 1.0 μM),对二磷酸腺苷和单磷酸腺苷具有选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Bubble-Inspired Multifunctional Magnetic Microrobots for Integrated Multidimensional Targeted Biosensing. Direct Hydrogen Production Promoted by Laser-Induced Water Plasma. Preferred Lung Accumulation of Polystyrene Nanoplastics with Negative Charges. Self-Matching Assembly of Chiral Gold Nanoparticles Leads to High Optical Asymmetry and Sensitive Detection of Adenosine Triphosphate. Constructing the Fulde–Ferrell–Larkin–Ovchinnikov State in a CrOCl/NbSe2 van der Waals Heterostructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1