Biocompatibility and osteogenic assessment of experimental fluoride-doped calcium-phosphate cements on human dental pulp stem cells

IF 4.6 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Dental Materials Pub Date : 2024-11-01 DOI:10.1016/j.dental.2024.09.019
Carmela Del Giudice , Gianrico Spagnuolo , Ciro Menale , Yu Fu Chou , Juan Manuel Núñez Martí , Carlo Rengo , Sandro Rengo , Salvatore Sauro
{"title":"Biocompatibility and osteogenic assessment of experimental fluoride-doped calcium-phosphate cements on human dental pulp stem cells","authors":"Carmela Del Giudice ,&nbsp;Gianrico Spagnuolo ,&nbsp;Ciro Menale ,&nbsp;Yu Fu Chou ,&nbsp;Juan Manuel Núñez Martí ,&nbsp;Carlo Rengo ,&nbsp;Sandro Rengo ,&nbsp;Salvatore Sauro","doi":"10.1016/j.dental.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>This study investigated the impact of some specific experimental calcium phosphate cements doped with different fluoride salts (FDCPCs) concentrations on the basal functions of human Dental Pulp Stem Cells (hDPSCs). Furthermore, this study also examined the migration, as well as the mineralisation through osteogenic differentiation.</div></div><div><h3>Methods</h3><div>Experimental FDCPCs were formulated using different concentrations of calcium/sodium fluoride salts [(5 wt%: VS5F), (10 wt%: VS10F), (20 wt%: VS20F)]. A fluoride-free calcium phosphate (VS0F) was used as a control. The hDPSCs were assessed to evaluate their self-renewal and migration activity in the presence of eluates of the different FDCPCs. A viability assay in osteogenic conditions was carried out, along with the differentiation potential through Alkaline Phosphatase Activity (ALP), and Alizarin Red Staining (ARS). Moreover, the gene expression of specific markers (RUNX2, ALP, COL1α1, OCN, OPN, DSPP, MEPE, and DMP-1) was also evaluated.</div></div><div><h3>Results</h3><div>All the tested FDCPD had no influence on cell migrations, but they caused a decrease in cell viability in osteogenic conditions when not diluted. Conversely, the eluants of VS20F showed a positive effect on stem cell differentiation. This result was corroborated through ALP activity, ARS assay. Moreover, upregulation of specific gene markers such as RUNX2, DMP-1, and DSPP was observed in hDPSCs, especially when treated with VS20F.</div></div><div><h3>Significance</h3><div>The experimental FDCPC tested in this study exhibits a dose-dependent capacity to promote mineralisation in osteogenic environment. The FDCPC-VS20F seems to be the most promising experimental material suitable for developing of pulp-capping materials with osteogenic and bioactive properties.</div></div>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":"40 11","pages":"Pages 2043-2050"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0109564124002884","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

This study investigated the impact of some specific experimental calcium phosphate cements doped with different fluoride salts (FDCPCs) concentrations on the basal functions of human Dental Pulp Stem Cells (hDPSCs). Furthermore, this study also examined the migration, as well as the mineralisation through osteogenic differentiation.

Methods

Experimental FDCPCs were formulated using different concentrations of calcium/sodium fluoride salts [(5 wt%: VS5F), (10 wt%: VS10F), (20 wt%: VS20F)]. A fluoride-free calcium phosphate (VS0F) was used as a control. The hDPSCs were assessed to evaluate their self-renewal and migration activity in the presence of eluates of the different FDCPCs. A viability assay in osteogenic conditions was carried out, along with the differentiation potential through Alkaline Phosphatase Activity (ALP), and Alizarin Red Staining (ARS). Moreover, the gene expression of specific markers (RUNX2, ALP, COL1α1, OCN, OPN, DSPP, MEPE, and DMP-1) was also evaluated.

Results

All the tested FDCPD had no influence on cell migrations, but they caused a decrease in cell viability in osteogenic conditions when not diluted. Conversely, the eluants of VS20F showed a positive effect on stem cell differentiation. This result was corroborated through ALP activity, ARS assay. Moreover, upregulation of specific gene markers such as RUNX2, DMP-1, and DSPP was observed in hDPSCs, especially when treated with VS20F.

Significance

The experimental FDCPC tested in this study exhibits a dose-dependent capacity to promote mineralisation in osteogenic environment. The FDCPC-VS20F seems to be the most promising experimental material suitable for developing of pulp-capping materials with osteogenic and bioactive properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实验性掺氟磷酸钙水门汀对人牙髓干细胞的生物相容性和成骨性评估。
研究目的本研究调查了掺入不同浓度氟盐(FDCPCs)的特定实验性磷酸钙水泥对人类牙髓干细胞(hDPSCs)基础功能的影响。此外,本研究还考察了迁移以及通过成骨分化实现矿化的情况:方法:使用不同浓度的氟化钙/氟化钠盐[(5 wt%:VS5F)、(10 wt%:VS10F)、(20 wt%:VS20F)]配制实验性 FDCPCs。无氟磷酸钙(VS0F)用作对照。对 hDPSCs 进行了评估,以评价其在不同 FDCPCs 洗脱液存在下的自我更新和迁移活性。此外,还进行了成骨条件下的活力检测,以及通过碱性磷酸酶活性(ALP)和茜素红染色(ARS)检测分化潜力。此外,还评估了特定标记物(RUNX2、ALP、COL1α1、OCN、OPN、DSPP、MEPE 和 DMP-1)的基因表达:结果:所有测试的 FDCPD 对细胞迁移均无影响,但未稀释时会导致成骨条件下的细胞活力下降。相反,VS20F 的洗脱液对干细胞分化有积极作用。ALP活性和ARS测定证实了这一结果。此外,在 hDPSCs 中还观察到 RUNX2、DMP-1 和 DSPP 等特定基因标记的上调,尤其是用 VS20F 处理时:本研究中测试的实验性 FDCPC 在成骨环境中具有剂量依赖性的矿化促进能力。FDCPC-VS20F似乎是最有前途的实验材料,适合开发具有成骨和生物活性特性的牙髓覆盖材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Dental Materials
Dental Materials 工程技术-材料科学:生物材料
CiteScore
9.80
自引率
10.00%
发文量
290
审稿时长
67 days
期刊介绍: Dental Materials publishes original research, review articles, and short communications. Academy of Dental Materials members click here to register for free access to Dental Materials online. The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology. Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.
期刊最新文献
Bonding neat hydrophobic-rich resins to etched dentin: A proof of concept. Models for shrinkage stress: C-factor and all that. Ability of a novel primer to enhance the polymerization of a self-cured resin composite. Classification and bibliometric analysis of hydrogels in periodontitis treatment: Trends, mechanisms, advantages, and future research directions. Microspheres of stem cells from human exfoliated deciduous teeth exhibit superior pulp regeneration capacity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1