High-yield production of completely linear dextrans and isomalto-oligosaccharides by a truncated dextransucrase from Ligilactobacillus animalis TMW 1.971
{"title":"High-yield production of completely linear dextrans and isomalto-oligosaccharides by a truncated dextransucrase from Ligilactobacillus animalis TMW 1.971","authors":"Oliver Müller, Daniel Wefers","doi":"10.1016/j.carres.2024.109284","DOIUrl":null,"url":null,"abstract":"<div><div>Several lactic acid bacteria are capable of producing water-soluble exopolysaccharides such as dextran from sucrose by using glucansucrases. Several recombinant glucansucrases were described, however, yields were often limited and most dextrans were branched at position <em>O</em>3. In this study, the dextransucrase from <em>Ligilactobacillus animalis</em> TMW 1.971 was recombinantly produced without its <em>N</em>-terminal variable region and used for dextran synthesis. The enzyme expressed well and showed very high total as well as transferase activities compared to other glucansucrases. It was able to transfer nearly all glucose from sucrose to oligo- and polymeric products under certain conditions (about 95 % of glucose transferred). The high efficiency of the enzyme made it possible to obtain absolute dextran yields of up to 214.9 g/L from a 1.5 M sucrose solution. Structural characterization of the products showed that the dextrans produced have a rather low molecular weight, a narrow size distribution, and are completely linear. Furthermore, we showed that various low molecular weight dextrans or 1,6-linked isomalto-oligosaccharides can be efficiently produced by acid hydrolysis. Overall, we demonstrated that <em>Ligilactobacillus animalis</em> TMW 1.971 dextransucrase can be used to efficiently synthesize dextrans with a quite unique structural composition. The dextrans produced have a high potential for further applications such as synthesis of copolymers or size standards with a very defined molecular structure.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109284"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524002635","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Several lactic acid bacteria are capable of producing water-soluble exopolysaccharides such as dextran from sucrose by using glucansucrases. Several recombinant glucansucrases were described, however, yields were often limited and most dextrans were branched at position O3. In this study, the dextransucrase from Ligilactobacillus animalis TMW 1.971 was recombinantly produced without its N-terminal variable region and used for dextran synthesis. The enzyme expressed well and showed very high total as well as transferase activities compared to other glucansucrases. It was able to transfer nearly all glucose from sucrose to oligo- and polymeric products under certain conditions (about 95 % of glucose transferred). The high efficiency of the enzyme made it possible to obtain absolute dextran yields of up to 214.9 g/L from a 1.5 M sucrose solution. Structural characterization of the products showed that the dextrans produced have a rather low molecular weight, a narrow size distribution, and are completely linear. Furthermore, we showed that various low molecular weight dextrans or 1,6-linked isomalto-oligosaccharides can be efficiently produced by acid hydrolysis. Overall, we demonstrated that Ligilactobacillus animalis TMW 1.971 dextransucrase can be used to efficiently synthesize dextrans with a quite unique structural composition. The dextrans produced have a high potential for further applications such as synthesis of copolymers or size standards with a very defined molecular structure.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".