{"title":"Matrix stiffness regulates mitochondria-lysosome contacts to modulate the mitochondrial network, alleviate the senescence of MSCs.","authors":"Kang Wang, Chingchun Ho, Xiangyu Li, Jianfeng Hou, Qipei Luo, Jiahong Wu, Yuxin Yang, Xinchun Zhang","doi":"10.1111/cpr.13746","DOIUrl":null,"url":null,"abstract":"<p><p>The extracellular microenvironment encompasses the extracellular matrix, neighbouring cells, cytokines, and fluid components. Anomalies in the microenvironment can trigger aging and a decreased differentiation capacity in mesenchymal stem cells (MSCs). MSCs can perceive variations in the firmness of the extracellular matrix and respond by regulating mitochondrial function. Diminished mitochondrial function is intricately linked to cellular aging, and studies have shown that mitochondria-lysosome contacts (M-L contacts) can regulate mitochondrial function to sustain cellular equilibrium. Nonetheless, the influence of M-L contacts on MSC aging under varying matrix stiffness remains unclear. In this study, utilizing single-cell RNA sequencing and atomic force microscopy, we further demonstrate that reduced matrix stiffness in older individuals leads to MSC aging and subsequent decline in osteogenic ability. Mechanistically, augmented M-L contacts under low matrix stiffness exacerbate MSC aging by escalating mitochondrial oxidative stress and peripheral division. Moreover, under soft matrix stiffness, cytoskeleton reorganization facilitates rapid movement of lysosomes. The M-L contacts inhibitor ML282 ameliorates MSC aging by reinstating mitochondrial network and function. Overall, our findings confirm that MSC aging is instigated by disruption of the mitochondrial network and function induced by matrix stiffness, while also elucidating the potential mechanism by which M-L Contact regulates mitochondrial homeostasis. Crucially, this presents promise for cellular anti-aging strategies centred on mitochondria, particularly in the realm of stem cell therapy.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13746"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13746","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The extracellular microenvironment encompasses the extracellular matrix, neighbouring cells, cytokines, and fluid components. Anomalies in the microenvironment can trigger aging and a decreased differentiation capacity in mesenchymal stem cells (MSCs). MSCs can perceive variations in the firmness of the extracellular matrix and respond by regulating mitochondrial function. Diminished mitochondrial function is intricately linked to cellular aging, and studies have shown that mitochondria-lysosome contacts (M-L contacts) can regulate mitochondrial function to sustain cellular equilibrium. Nonetheless, the influence of M-L contacts on MSC aging under varying matrix stiffness remains unclear. In this study, utilizing single-cell RNA sequencing and atomic force microscopy, we further demonstrate that reduced matrix stiffness in older individuals leads to MSC aging and subsequent decline in osteogenic ability. Mechanistically, augmented M-L contacts under low matrix stiffness exacerbate MSC aging by escalating mitochondrial oxidative stress and peripheral division. Moreover, under soft matrix stiffness, cytoskeleton reorganization facilitates rapid movement of lysosomes. The M-L contacts inhibitor ML282 ameliorates MSC aging by reinstating mitochondrial network and function. Overall, our findings confirm that MSC aging is instigated by disruption of the mitochondrial network and function induced by matrix stiffness, while also elucidating the potential mechanism by which M-L Contact regulates mitochondrial homeostasis. Crucially, this presents promise for cellular anti-aging strategies centred on mitochondria, particularly in the realm of stem cell therapy.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.