CHK1 controls zygote pronuclear envelope breakdown by regulating F-actin through interacting with MICAL3.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Reports Pub Date : 2024-11-01 Epub Date: 2024-10-02 DOI:10.1038/s44319-024-00267-7
Honghui Zhang, Ying Cui, Bohan Yang, Zhenzhen Hou, Mengge Zhang, Wei Su, Tailai Chen, Yuehong Bian, Mei Li, Zi-Jiang Chen, Han Zhao, Shigang Zhao, Keliang Wu
{"title":"CHK1 controls zygote pronuclear envelope breakdown by regulating F-actin through interacting with MICAL3.","authors":"Honghui Zhang, Ying Cui, Bohan Yang, Zhenzhen Hou, Mengge Zhang, Wei Su, Tailai Chen, Yuehong Bian, Mei Li, Zi-Jiang Chen, Han Zhao, Shigang Zhao, Keliang Wu","doi":"10.1038/s44319-024-00267-7","DOIUrl":null,"url":null,"abstract":"<p><p>CHK1 mutations could cause human zygote arrest at the pronuclei stage, a phenomenon that is not well understood at the molecular level. In this study, we conducted experiments where pre-pronuclei from zygotes with CHK1 mutation were transferred into the cytoplasm of normal enucleated fertilized eggs. This approach rescued the zygote arrest caused by the mutation, resulting in the production of a high-quality blastocyst. This suggests that CHK1 dysfunction primarily disrupts crucial biological processes occurring in the cytoplasm. Further investigation reveals that CHK1 mutants have an impact on the F-actin meshwork, leading to disturbances in pronuclear envelope breakdown. Through co-immunoprecipitation and mass spectrometry analysis of around 6000 mouse zygotes, we identified an interaction between CHK1 and MICAL3, a key regulator of F-actin disassembly. The gain-of-function mutants of CHK1 enhance their interaction with MICAL3 and increase MICAL3 enzymatic activity, resulting in excessive depolymerization of F-actin. These findings shed light on the regulatory mechanism behind pronuclear envelope breakdown during the transition from meiosis to the first mitosis in mammals.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00267-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CHK1 mutations could cause human zygote arrest at the pronuclei stage, a phenomenon that is not well understood at the molecular level. In this study, we conducted experiments where pre-pronuclei from zygotes with CHK1 mutation were transferred into the cytoplasm of normal enucleated fertilized eggs. This approach rescued the zygote arrest caused by the mutation, resulting in the production of a high-quality blastocyst. This suggests that CHK1 dysfunction primarily disrupts crucial biological processes occurring in the cytoplasm. Further investigation reveals that CHK1 mutants have an impact on the F-actin meshwork, leading to disturbances in pronuclear envelope breakdown. Through co-immunoprecipitation and mass spectrometry analysis of around 6000 mouse zygotes, we identified an interaction between CHK1 and MICAL3, a key regulator of F-actin disassembly. The gain-of-function mutants of CHK1 enhance their interaction with MICAL3 and increase MICAL3 enzymatic activity, resulting in excessive depolymerization of F-actin. These findings shed light on the regulatory mechanism behind pronuclear envelope breakdown during the transition from meiosis to the first mitosis in mammals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CHK1 通过与 MICAL3 相互作用来调节 F-肌动蛋白,从而控制子代原核包膜的破裂。
CHK1突变可导致人类子代在前核阶段停滞,但这一现象在分子水平上还不甚明了。在这项研究中,我们进行了实验,将来自CHK1突变子代的前单核转移到正常有核受精卵的细胞质中。这种方法挽救了突变导致的子代停滞,从而产生了高质量的囊胚。这表明,CHK1 功能障碍主要破坏了发生在细胞质中的关键生物过程。进一步的研究发现,CHK1 突变体对 F-肌动蛋白网状结构有影响,导致原核包膜破裂紊乱。通过对大约 6000 个小鼠胚胎进行共免疫沉淀和质谱分析,我们确定了 CHK1 与 F-肌动蛋白分解的关键调控因子 MICAL3 之间的相互作用。CHK1的功能增益突变体增强了与MICAL3的相互作用,提高了MICAL3的酶活性,导致F-肌动蛋白过度解聚。这些发现揭示了哺乳动物从减数分裂过渡到第一次有丝分裂期间代核包膜破裂背后的调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
期刊最新文献
The USP12/46 deubiquitinases protect integrins from ESCRT-mediated lysosomal degradation. Making contact away from home: a bacterial secreted effector mediates inter-organelle communication. Reducing competition between msd and genomic DNA improves retron editing efficiency. PARP1 condensates differentially partition DNA repair proteins and enhance DNA ligation. Severe fever with thrombocytopenia syndrome virus induces lactylation of m6A reader protein YTHDF1 to facilitate viral replication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1