Source apportionment of Cd in karst soil based on the delayed geochemical hazard model.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-10-03 DOI:10.1007/s10653-024-02247-1
Jingjing Lian, Jie Li, Xiaohong Gao
{"title":"Source apportionment of Cd in karst soil based on the delayed geochemical hazard model.","authors":"Jingjing Lian, Jie Li, Xiaohong Gao","doi":"10.1007/s10653-024-02247-1","DOIUrl":null,"url":null,"abstract":"<p><p>Soil Cd contamination has become increasingly prominent in karst regions. Studies have generally elucidated the natural sources of Cd in high-background areas and analyzed their migration and enrichment mechanisms. This study comprehensively analyzed the total content and speciation of Cd in high-background areas using the delayed geochemical hazard (DGH) model to identify the sources of Cd in the region. The results indicated that Cd in the research area followed a pattern of gradual geochemical disasters. In Quaternary soil, brick-red soil, and submergenic paddy soil with hydromorphic characteristics, 32%, 7.69%, and 30% of soil Cd samples exceeded the critical threshold of the releasable total amount, respectively. Based on the DGH model, it was concluded that Cd in this region was mainly influenced by human activities. Field investigations corroborated this conclusion and aligned with the findings. Compared with the traditional source apportionment receptor models (mainly PCA and PMF), the DGH model not only saved considerable time and cost, but also avoided uncertainty associated with the results and complex and varied data processing and computational analysis processes. Moreover, the DGH model was able to identify the factors having the greatest impact on the ecological risk of Cd in the research area, thus facilitating targeted prevention and management planning based on the characteristics or chemical properties of their elements.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"463"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02247-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Soil Cd contamination has become increasingly prominent in karst regions. Studies have generally elucidated the natural sources of Cd in high-background areas and analyzed their migration and enrichment mechanisms. This study comprehensively analyzed the total content and speciation of Cd in high-background areas using the delayed geochemical hazard (DGH) model to identify the sources of Cd in the region. The results indicated that Cd in the research area followed a pattern of gradual geochemical disasters. In Quaternary soil, brick-red soil, and submergenic paddy soil with hydromorphic characteristics, 32%, 7.69%, and 30% of soil Cd samples exceeded the critical threshold of the releasable total amount, respectively. Based on the DGH model, it was concluded that Cd in this region was mainly influenced by human activities. Field investigations corroborated this conclusion and aligned with the findings. Compared with the traditional source apportionment receptor models (mainly PCA and PMF), the DGH model not only saved considerable time and cost, but also avoided uncertainty associated with the results and complex and varied data processing and computational analysis processes. Moreover, the DGH model was able to identify the factors having the greatest impact on the ecological risk of Cd in the research area, thus facilitating targeted prevention and management planning based on the characteristics or chemical properties of their elements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于延迟地球化学危害模型的岩溶土壤中镉的来源分配。
岩溶地区的土壤镉污染问题日益突出。研究普遍阐明了高背景地区镉的天然来源,并分析了其迁移和富集机制。本研究利用延迟地球化学危害(DGH)模型,全面分析了高背景地区镉的总含量和种类,以确定该地区镉的来源。结果表明,研究区域的镉呈现出渐变的地球化学灾害模式。在第四纪土壤、砖红壤和具有水成特征的亚水成水稻土中,分别有 32%、7.69% 和 30% 的土壤镉样品超过了可释放总量的临界值。根据 DGH 模型得出结论,该地区的镉主要受人类活动的影响。实地调查证实了这一结论,并与研究结果保持一致。与传统的来源分配受体模型(主要是 PCA 和 PMF)相比,DGH 模型不仅节省了大量的时间和成本,还避免了结果的不确定性以及复杂多变的数据处理和计算分析过程。此外,DGH 模型还能确定对研究区域镉生态风险影响最大的因素,从而有助于根据这些因素的特征或化学性质制定有针对性的预防和管理规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Mercury in saliva, milk, and hair of nursing mothers in southeastern Iranian mothers: levels, distribution and risk assessment. Radon quantification in water and dose estimation via inhalation and ingestion across age groups in the Pattan region of North Kashmir, India. Effects of microplastics on 3,5-dichloroaniline adsorption, degradation, bioaccumulation and phytotoxicity in soil-chive systems. The impact of prenatal exposure to fine particulate matter and its components on maternal and neonatal thyroid function and birth weight: a prospective cohort study. Chemical analysis of toxic elements: total cadmium, lead, mercury, arsenic and inorganic arsenic in local and imported rice consumed in the Kingdom of Saudi Arabia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1