Microplastics (MPs) and pesticides are two pollutants of concern in agricultural soils. 3,5-dichloroaniline (3,5-DCA), a highly toxic metabolite of dicarboximide fungicides, commonly co-exists with MPs and poses a risk to the environment and food safety. Batch adsorption and soil incubation experiments were employed to investigate the effects of polyethylene (PE) and polylactic acid (PLA) MPs on the environmental behavior of 3,5-DCA in soil. Chive (Allium ascalonicum) was used as the experimental plant, a pot experiment was conducted to examine the effects of individual or combined exposure to MPs and 3,5-DCA on plant 3,5-DCA bioaccumulation, growth characteristics, and phytotoxicity. The results showed that PE- and PLA-MPs increased the adsorption capacity of soil to 3,5-DCA and prolonged the degradation half-life of 3,5-DCA by 6.24 and 16.07 d, respectively. Two MPs partially alleviated the negative effects of 3,5-DCA on the root length and fresh weight of chives, while PE-MPs had a positive and dose-dependent impact on the contents of photosynthetic pigment in chive leaves. Co-exposure to 3,5-DCA and MPs increased residues of 3,5-DCA in soil and chive roots but had no significant effect on 3,5-DCA residues in chive stems or leaves. Moreover, 3,5-DCA residues in PLA-MP soil were consistently higher than those in PE-MP soil. Conclusively, MPs altered the 3,5-DCA adsorption and degradation behavior in soil, as well as its bioaccumulation in chives. Co-exposure to MPs and 3,5-DCA had dose-dependent and MP-specific effects on chive plant development and phytotoxicity.
{"title":"Effects of microplastics on 3,5-dichloroaniline adsorption, degradation, bioaccumulation and phytotoxicity in soil-chive systems.","authors":"Jing Yang, Jiaohong Li, Zhenxiang Guo, Yibo Dong, Xiaomao Wu, Wanping Zhang","doi":"10.1007/s10653-024-02305-8","DOIUrl":"https://doi.org/10.1007/s10653-024-02305-8","url":null,"abstract":"<p><p>Microplastics (MPs) and pesticides are two pollutants of concern in agricultural soils. 3,5-dichloroaniline (3,5-DCA), a highly toxic metabolite of dicarboximide fungicides, commonly co-exists with MPs and poses a risk to the environment and food safety. Batch adsorption and soil incubation experiments were employed to investigate the effects of polyethylene (PE) and polylactic acid (PLA) MPs on the environmental behavior of 3,5-DCA in soil. Chive (Allium ascalonicum) was used as the experimental plant, a pot experiment was conducted to examine the effects of individual or combined exposure to MPs and 3,5-DCA on plant 3,5-DCA bioaccumulation, growth characteristics, and phytotoxicity. The results showed that PE- and PLA-MPs increased the adsorption capacity of soil to 3,5-DCA and prolonged the degradation half-life of 3,5-DCA by 6.24 and 16.07 d, respectively. Two MPs partially alleviated the negative effects of 3,5-DCA on the root length and fresh weight of chives, while PE-MPs had a positive and dose-dependent impact on the contents of photosynthetic pigment in chive leaves. Co-exposure to 3,5-DCA and MPs increased residues of 3,5-DCA in soil and chive roots but had no significant effect on 3,5-DCA residues in chive stems or leaves. Moreover, 3,5-DCA residues in PLA-MP soil were consistently higher than those in PE-MP soil. Conclusively, MPs altered the 3,5-DCA adsorption and degradation behavior in soil, as well as its bioaccumulation in chives. Co-exposure to MPs and 3,5-DCA had dose-dependent and MP-specific effects on chive plant development and phytotoxicity.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"519"},"PeriodicalIF":3.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maternal and child health has garnered considerable attention recently. The effects of prenatal exposure to PM2.5 and its components on thyroid function in both mothers and fetuses, as well as on offspring birth weight, remain unexplored. This study involved 446 mother-infant pairs from a cohort study in Ma'anshan, China, during 2021-2022. Air pollution data were obtained from the Tracking Air Pollution (TAP) project. Thyroid hormone levels (FT3, FT4, and TSH) were measured in maternal blood samples taken at various pregnancy stages and in cord blood. We employed multiple analytical methods to evaluate the effects of PM2.5 and its components on maternal thyroid function and birth weight z-score (BWz). The GLR analysis reveals that the effect of PM2.5 and its components on BWz differs according to the pregnancy stage and the specific pollutant involved. During the late pregnancy, increased exposure to PM2.5 and specific components (for instance, and ) was correlated with elevated maternal FT4 levels (p < 0.05) and reduced BWz (p < 0.05). QgC results illustrated a notable negative correlation between heightened PM2.5 exposure and BWz in late pregnancy. BKMR analysis confirmed that overall exposure to PM2.5 and its components negatively impacted BWz during the third trimester. Mediation analysis showed that changes in maternal FT4 levels accounted for approximately 8.52%, 8.05%, and 8.13% of the negative effects on BWz from exposure to , and , respectively (p < 0.05). In healthy pregnancies, exposure to PM2.5 and its components during the late pregnancy is linked to alterations in maternal thyroid hormone levels, potentially leading to reduced birth weight. Maternal FT4 levels may mediate the connection between PM2.5 components exposure and reduced the weight of offspring.
{"title":"The impact of prenatal exposure to fine particulate matter and its components on maternal and neonatal thyroid function and birth weight: a prospective cohort study.","authors":"Sun Zhang, Jiahui Li, Siyu Zhang, Siwei Dai, Chen Sun, Huiya Ma, Kai Huang, Maolin Chen, Guopeng Gao, Chengyang Hu, Xiujun Zhang","doi":"10.1007/s10653-024-02303-w","DOIUrl":"https://doi.org/10.1007/s10653-024-02303-w","url":null,"abstract":"<p><p>Maternal and child health has garnered considerable attention recently. The effects of prenatal exposure to PM<sub>2.5</sub> and its components on thyroid function in both mothers and fetuses, as well as on offspring birth weight, remain unexplored. This study involved 446 mother-infant pairs from a cohort study in Ma'anshan, China, during 2021-2022. Air pollution data were obtained from the Tracking Air Pollution (TAP) project. Thyroid hormone levels (FT<sub>3</sub>, FT<sub>4</sub>, and TSH) were measured in maternal blood samples taken at various pregnancy stages and in cord blood. We employed multiple analytical methods to evaluate the effects of PM<sub>2.5</sub> and its components on maternal thyroid function and birth weight z-score (BWz). The GLR analysis reveals that the effect of PM<sub>2.5</sub> and its components on BWz differs according to the pregnancy stage and the specific pollutant involved. During the late pregnancy, increased exposure to PM<sub>2.5</sub> and specific components (for instance, <math> <mrow><msubsup><mtext>NO</mtext> <mrow><mn>3</mn></mrow> <mi>_</mi></msubsup> <mrow></mrow></mrow> </math> and <math><msubsup><mtext>SO</mtext> <mrow><mn>4</mn></mrow> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </math> ) was correlated with elevated maternal FT<sub>4</sub> levels (p < 0.05) and reduced BWz (p < 0.05). QgC results illustrated a notable negative correlation between heightened PM<sub>2.5</sub> exposure and BWz in late pregnancy. BKMR analysis confirmed that overall exposure to PM<sub>2.5</sub> and its components negatively impacted BWz during the third trimester. Mediation analysis showed that changes in maternal FT<sub>4</sub> levels accounted for approximately 8.52%, 8.05%, and 8.13% of the negative effects on BWz from exposure to <math><msubsup><mtext>NH</mtext> <mrow><mn>4</mn></mrow> <mo>+</mo></msubsup> </math> , <math><msubsup><mtext>NO</mtext> <mrow><mn>3</mn></mrow> <mi>_</mi></msubsup> </math> and <math><msubsup><mtext>SO</mtext> <mrow><mn>4</mn></mrow> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </math> , respectively (p < 0.05). In healthy pregnancies, exposure to PM<sub>2.5</sub> and its components during the late pregnancy is linked to alterations in maternal thyroid hormone levels, potentially leading to reduced birth weight. Maternal FT<sub>4</sub> levels may mediate the connection between PM<sub>2.5</sub> components exposure and reduced the weight of offspring.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"520"},"PeriodicalIF":3.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1007/s10653-024-02280-0
May M Alrashdi, Abby Ragazzon-Smith, Ilya Strashnov, David A Polya
Rice consumption is a pathway for human exposure to toxic elements. Although rice is a major staple in the Kingdom of Saudi Arabia (KSA) there is limited published data about its toxic element composition. Both imported and locally grown Hassawi rice in Saudi Arabia were collected, digested then analysed by HPLC-ICP-MS for inorganic arsenic (i-As) and by ICP-MS for As, Cd, Pb and Hg. Of these toxic elements, i-As was present at concentrations that might give rise to material concerns about human exposure and public health. Hassawi rice (mean 43 ± 5 µg/kg) was found to have significantly lower concentrations of i-As than imported rice (mean 73 ± 8 µg/kg). The estimated exposure of adults consuming imported rice in one KSA city reached 0.3 µg/kg-bw/day, within the margin of safety of the recently withdrawn WHO PTWI for i-As of 2.1 µg/kg-bw/day and higher than EFSA's 0.06 µg/kg-bw/day skin cancer BMDL05.
{"title":"Chemical analysis of toxic elements: total cadmium, lead, mercury, arsenic and inorganic arsenic in local and imported rice consumed in the Kingdom of Saudi Arabia.","authors":"May M Alrashdi, Abby Ragazzon-Smith, Ilya Strashnov, David A Polya","doi":"10.1007/s10653-024-02280-0","DOIUrl":"10.1007/s10653-024-02280-0","url":null,"abstract":"<p><p>Rice consumption is a pathway for human exposure to toxic elements. Although rice is a major staple in the Kingdom of Saudi Arabia (KSA) there is limited published data about its toxic element composition. Both imported and locally grown Hassawi rice in Saudi Arabia were collected, digested then analysed by HPLC-ICP-MS for inorganic arsenic (i-As) and by ICP-MS for As, Cd, Pb and Hg. Of these toxic elements, i-As was present at concentrations that might give rise to material concerns about human exposure and public health. Hassawi rice (mean 43 ± 5 µg/kg) was found to have significantly lower concentrations of i-As than imported rice (mean 73 ± 8 µg/kg). The estimated exposure of adults consuming imported rice in one KSA city reached 0.3 µg/kg-bw/day, within the margin of safety of the recently withdrawn WHO PTWI for i-As of 2.1 µg/kg-bw/day and higher than EFSA's 0.06 µg/kg-bw/day skin cancer BMDL<sub>05</sub>.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"518"},"PeriodicalIF":3.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569018/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present study, liquid scintillation counting triple to double coincidence ratio technique is used to ascertain the gross α and β activity in groundwater samples collected from the Beldih mine region in the vicinity of the South Purulia Shear Zone (SPSZ) of Chota Nagpur Plateau in eastern India. A total of sixty samples were collected from deep tube wells located in the study area to assess the potential health threats caused by α and β emitting radionuclides present in these water samples. Average gross α activity in the region of study is 0.09 ± 0.05 Bq/L, with a maximum of 3.22 ± 0.07 Bq/L. On the other hand, the average gross β activity is found to be 0.13 ± 0.02 Bq/L, with a maximum of 0.29 ± 0.02 Bq/L. It was observed that gross α activity level in three samples exceeds the safety limit of 0.5 Bq/L recommended by the World Health Organization. No significant gross β activity was observed. However, the radiological parameters for assessment of potential health threats due to ionizing radiation have been observed to be significantly high for adults. The results of this study indicate that the radiological assessment of groundwater in the Beldih mine region may be extended in future.
{"title":"Assessment of radiological hazards in terms of gross α -β activities in groundwater in and around Beldih mine region of eastern India.","authors":"Sayantan Mitra, Nabanita Naskar, Susanta Lahiri, Chiranjib Barman","doi":"10.1007/s10653-024-02292-w","DOIUrl":"https://doi.org/10.1007/s10653-024-02292-w","url":null,"abstract":"<p><p>In the present study, liquid scintillation counting triple to double coincidence ratio technique is used to ascertain the gross α and β activity in groundwater samples collected from the Beldih mine region in the vicinity of the South Purulia Shear Zone (SPSZ) of Chota Nagpur Plateau in eastern India. A total of sixty samples were collected from deep tube wells located in the study area to assess the potential health threats caused by α and β emitting radionuclides present in these water samples. Average gross α activity in the region of study is 0.09 ± 0.05 Bq/L, with a maximum of 3.22 ± 0.07 Bq/L. On the other hand, the average gross β activity is found to be 0.13 ± 0.02 Bq/L, with a maximum of 0.29 ± 0.02 Bq/L. It was observed that gross α activity level in three samples exceeds the safety limit of 0.5 Bq/L recommended by the World Health Organization. No significant gross β activity was observed. However, the radiological parameters for assessment of potential health threats due to ionizing radiation have been observed to be significantly high for adults. The results of this study indicate that the radiological assessment of groundwater in the Beldih mine region may be extended in future.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"516"},"PeriodicalIF":3.2,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1007/s10653-024-02291-x
Stuti Kushwaha, N Janardhana Raju, Mark Macklin, A L Ramanathan
Sediment serves as a heavy metal store in the riverine system and provides information about the river's health. To understand the distribution of heavy metal content in the Ganga River basin (GRB), a total of 25-bed sediment and suspended particulate matter (SPM) samples were collected from 25 locations in December 2019. Bed sediment samples were analyzed for different physio-chemical parameters, along with heavy metals. Due to insufficient quantity of SPM, the samples were not analyzed for any physio-chemical parameter. The metal concentrations in bed sediments were found to be as follows: Co (6-20 mg/kg), Cr (34-108 mg/kg), Ni (6-46 mg/kg), Cu (14-210 mg/kg), and Zn (30-264 mg/kg) and in SPM, the concentrations were Co (BDL-50 mg/kg), Cr (10-168 mg/kg), Ni (BDL-88 mg/kg), Cu (26-80 mg/kg), and Zn (44-1186 mg/kg). In bed sediment, a strong correlation of 0.86 and 0.93 was found between Ni and Cr, and Cu and Zn respectively and no significant correlation exists between organic carbon and metals except Co. In SPM, a low to moderate correlation was found between all the metals except Zn. The risk indices show adverse effects at Pragayraj, Fulhar, and Banshberia. Two major clusters were formed in Hierarchal Cluster Analysis (HCA) among the sample points in SPM and bed sediment. This study concludes that the Ganga River at Prayagraj, Banshberia, and Fulhar River is predominately polluted with Cu and Zn, possibly posing an ecological risk. These results can help policymakers in implementing measures to control metal pollution in the Ganga River and its tributaries.
{"title":"Distribution of heavy metals in the sediments of Ganga River basin: source identification and risk assessment.","authors":"Stuti Kushwaha, N Janardhana Raju, Mark Macklin, A L Ramanathan","doi":"10.1007/s10653-024-02291-x","DOIUrl":"10.1007/s10653-024-02291-x","url":null,"abstract":"<p><p>Sediment serves as a heavy metal store in the riverine system and provides information about the river's health. To understand the distribution of heavy metal content in the Ganga River basin (GRB), a total of 25-bed sediment and suspended particulate matter (SPM) samples were collected from 25 locations in December 2019. Bed sediment samples were analyzed for different physio-chemical parameters, along with heavy metals. Due to insufficient quantity of SPM, the samples were not analyzed for any physio-chemical parameter. The metal concentrations in bed sediments were found to be as follows: Co (6-20 mg/kg), Cr (34-108 mg/kg), Ni (6-46 mg/kg), Cu (14-210 mg/kg), and Zn (30-264 mg/kg) and in SPM, the concentrations were Co (BDL-50 mg/kg), Cr (10-168 mg/kg), Ni (BDL-88 mg/kg), Cu (26-80 mg/kg), and Zn (44-1186 mg/kg). In bed sediment, a strong correlation of 0.86 and 0.93 was found between Ni and Cr, and Cu and Zn respectively and no significant correlation exists between organic carbon and metals except Co. In SPM, a low to moderate correlation was found between all the metals except Zn. The risk indices show adverse effects at Pragayraj, Fulhar, and Banshberia. Two major clusters were formed in Hierarchal Cluster Analysis (HCA) among the sample points in SPM and bed sediment. This study concludes that the Ganga River at Prayagraj, Banshberia, and Fulhar River is predominately polluted with Cu and Zn, possibly posing an ecological risk. These results can help policymakers in implementing measures to control metal pollution in the Ganga River and its tributaries.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"517"},"PeriodicalIF":3.2,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1007/s10653-024-02289-5
Shaoxia Lin, Xiaolan Liu, Qiuxiao Yan, Guangyan Liang, Daoping Wang
This study aimed to investigate heavy metal enrichment in different tea plant varieties and their distribution within different plant parts and to clarify the behavioral characteristics of heavy metals in the tea tree-soil system and their influencing factors. In this study, soil samples were collected from the root zones of 13 tea tree varieties in Guizhou, which had been planted for 10 years. The aim was to compare the physicochemical properties of tea plantation soils under soil-forming matrixes and consistent management. Additionally, the study investigated the enrichment and transportation patterns of Cd, Cr, Cu, Pb, Zn, and Ni in the tea tree-soil systems of different tea tree varieties. The results showed that the planting of tea trees decreased the soil pH by 0.5; soil nutrients decreased; soil Pb, Cr, Ni, Cu, and Zn contents in the root zone increased; and Cd content decreased. Heavy metals were mainly enriched in the roots, and Zn, Cu, Ni, and other elements related to the protein and enzyme synthesis of tea trees could be mostly transported to the stems and leaves. There were significant differences in the enrichment and transportation of heavy metals among the different tea tree varieties. Under consistent soil-forming parent material, soil pH, organic matter, nutrients, and other indices only had a significant effect on heavy metal enrichment in the tea tree roots. Therefore, in areas with high background soil heavy metal contents, the construction of tea plantations should be based on regional soil environmental conditions to choose tea tree varieties with low heavy metal enrichment capacities to avoid the risk of high background soil heavy metals on the safe production of tea for consumers.
{"title":"Research on heavy metal enrichment and transportation in tea plant-soil systems of different varieties.","authors":"Shaoxia Lin, Xiaolan Liu, Qiuxiao Yan, Guangyan Liang, Daoping Wang","doi":"10.1007/s10653-024-02289-5","DOIUrl":"https://doi.org/10.1007/s10653-024-02289-5","url":null,"abstract":"<p><p>This study aimed to investigate heavy metal enrichment in different tea plant varieties and their distribution within different plant parts and to clarify the behavioral characteristics of heavy metals in the tea tree-soil system and their influencing factors. In this study, soil samples were collected from the root zones of 13 tea tree varieties in Guizhou, which had been planted for 10 years. The aim was to compare the physicochemical properties of tea plantation soils under soil-forming matrixes and consistent management. Additionally, the study investigated the enrichment and transportation patterns of Cd, Cr, Cu, Pb, Zn, and Ni in the tea tree-soil systems of different tea tree varieties. The results showed that the planting of tea trees decreased the soil pH by 0.5; soil nutrients decreased; soil Pb, Cr, Ni, Cu, and Zn contents in the root zone increased; and Cd content decreased. Heavy metals were mainly enriched in the roots, and Zn, Cu, Ni, and other elements related to the protein and enzyme synthesis of tea trees could be mostly transported to the stems and leaves. There were significant differences in the enrichment and transportation of heavy metals among the different tea tree varieties. Under consistent soil-forming parent material, soil pH, organic matter, nutrients, and other indices only had a significant effect on heavy metal enrichment in the tea tree roots. Therefore, in areas with high background soil heavy metal contents, the construction of tea plantations should be based on regional soil environmental conditions to choose tea tree varieties with low heavy metal enrichment capacities to avoid the risk of high background soil heavy metals on the safe production of tea for consumers.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"514"},"PeriodicalIF":3.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diabetes is a global public health concern with increasing prevalence worldwide. Chromium (Cr), a trace element found in soil, water, and food, has been proposed to have a possible positive effect in glucose metabolism and diabetes mellitus prevention. However, the relationship between trivalent chromium [Cr(III)] exposure, mainly through the consumption of diet supplements, and type 2 diabetes mellitus (T2DM) remains controversial. An extensive systematic review of the current literature on randomized controlled studies (RCTs) was conducted from 1 January 2000, to January 2024 using the databases PubMed, Scopus, ScienceDirect, and Cochrane, with specific keywords and inclusion as well as exclusion criteria. After close screening of the research studies retrieved from the mentioned websites was conducted, the most related studies were included in the final systematic review. The studies were evaluated for the degree of relevance, quality, and risk bias, using appropriate quality assessment tools. Several of the included RCT studies reported possible benefits of Cr(III) supplementation, mainly in the form of chromium picolinate (CrPic), chromium yeast (CY), chromium chloride (CrCl3), and chromium nicotinate (CrN). The dosage of chromium was between 50 and 1000 μg/day and it was consumed from 2 to 6 months. Glycemic control markers, including FPG, insulin, HbA1C, and HOMA-IR levels, significantly decrease following chromium supplementation, mainly in studies with a longer intervention period. Supplementing with chromium (Cr) indicated that could significantly improve lipid profile by raising high-density lipoprotein and lowering triglyceride and total cholesterol while having little effect on low-density lipoprotein. However, most research findings include significant limitations, such as inconsistent dosage and type of chromium, formulation of supplements, and study duration. Further well-designed and high-quality research is needed to fully understand the role of chromium dietary supplementation and the potential risks related to its mechanisms of action, type, and dose, in the prevention and treatment of type 2 diabetes mellitus.
{"title":"Chromium supplementation and type 2 diabetes mellitus: an extensive systematic review.","authors":"Maria-Nefeli Georgaki, Sophia Tsokkou, Antonios Keramas, Theodora Papamitsou, Sofia Karachrysafi, Nerantzis Kazakis","doi":"10.1007/s10653-024-02297-5","DOIUrl":"https://doi.org/10.1007/s10653-024-02297-5","url":null,"abstract":"<p><p>Diabetes is a global public health concern with increasing prevalence worldwide. Chromium (Cr), a trace element found in soil, water, and food, has been proposed to have a possible positive effect in glucose metabolism and diabetes mellitus prevention. However, the relationship between trivalent chromium [Cr(III)] exposure, mainly through the consumption of diet supplements, and type 2 diabetes mellitus (T2DM) remains controversial. An extensive systematic review of the current literature on randomized controlled studies (RCTs) was conducted from 1 January 2000, to January 2024 using the databases PubMed, Scopus, ScienceDirect, and Cochrane, with specific keywords and inclusion as well as exclusion criteria. After close screening of the research studies retrieved from the mentioned websites was conducted, the most related studies were included in the final systematic review. The studies were evaluated for the degree of relevance, quality, and risk bias, using appropriate quality assessment tools. Several of the included RCT studies reported possible benefits of Cr(III) supplementation, mainly in the form of chromium picolinate (CrPic), chromium yeast (CY), chromium chloride (CrCl<sub>3</sub>), and chromium nicotinate (CrN). The dosage of chromium was between 50 and 1000 μg/day and it was consumed from 2 to 6 months. Glycemic control markers, including FPG, insulin, HbA1C, and HOMA-IR levels, significantly decrease following chromium supplementation, mainly in studies with a longer intervention period. Supplementing with chromium (Cr) indicated that could significantly improve lipid profile by raising high-density lipoprotein and lowering triglyceride and total cholesterol while having little effect on low-density lipoprotein. However, most research findings include significant limitations, such as inconsistent dosage and type of chromium, formulation of supplements, and study duration. Further well-designed and high-quality research is needed to fully understand the role of chromium dietary supplementation and the potential risks related to its mechanisms of action, type, and dose, in the prevention and treatment of type 2 diabetes mellitus.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"515"},"PeriodicalIF":3.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1007/s10653-024-02298-4
Saeid Firouzbakht, Saeid Gitipour, Majid Baghdadi
Stabilization/Solidification (S/S) using Portland cement is a common soil remediation technique for heavy metal-contaminated sites. However, due to the hindrance of cement hydration by heavy metals (HMs) and the high CO2 emissions from cement production, efforts have been made to reduce cement consumption. Supplementary cementitious materials (SCMs) present an efficient alternative for this purpose. This study investigates the impact of hydrochar and modified hydrochar as SCMs for remediating soils contaminated with Zn, Pb, and Cd. Forty treated soil samples were evaluated using unconfined compressive strength (UCS), pH, Toxicity characteristic leaching procedure (TCLP), and sequential extraction procedure (SEP) tests, and statistical analysis was conducted to assess the effects of binder content, hydrochar dosage, and hydrochar type. Results show that substituting cement with hydrochar or modified hydrochar reduces UCS by 10-40%, with hydrochar having a greater negative impact than modified hydrochar. pH values ranged from 6.98 to 12.64, facilitating HMs precipitation. In heavily contaminated samples, hydrochar or modified hydrochars significantly decreased the Zn, Pb, and Cd TCLP values by 55%, 63%, and 50%, respectively. In moderately contaminated samples, the reduction was slight for Zn and Pb, with no significant change for Cd. SEP test results indicated that hydrochar or modified hydrochar in cement improves the transformation of the acid-soluble fraction to the residual fraction of Zn and Pb, but not for Cd-contaminated soil samples. Overall, these findings suggest that incorporating hydrochar or modified hydrochar as SCMs in cement contributes to reducing cement usage and CO2 emissions while enhancing the stabilization efficiency of certain heavy metals in contaminated soils.
{"title":"Impact of hydrochar in stabilization/solidification of heavy metal-contaminated soil with Portland cement.","authors":"Saeid Firouzbakht, Saeid Gitipour, Majid Baghdadi","doi":"10.1007/s10653-024-02298-4","DOIUrl":"https://doi.org/10.1007/s10653-024-02298-4","url":null,"abstract":"<p><p>Stabilization/Solidification (S/S) using Portland cement is a common soil remediation technique for heavy metal-contaminated sites. However, due to the hindrance of cement hydration by heavy metals (HMs) and the high CO<sub>2</sub> emissions from cement production, efforts have been made to reduce cement consumption. Supplementary cementitious materials (SCMs) present an efficient alternative for this purpose. This study investigates the impact of hydrochar and modified hydrochar as SCMs for remediating soils contaminated with Zn, Pb, and Cd. Forty treated soil samples were evaluated using unconfined compressive strength (UCS), pH, Toxicity characteristic leaching procedure (TCLP), and sequential extraction procedure (SEP) tests, and statistical analysis was conducted to assess the effects of binder content, hydrochar dosage, and hydrochar type. Results show that substituting cement with hydrochar or modified hydrochar reduces UCS by 10-40%, with hydrochar having a greater negative impact than modified hydrochar. pH values ranged from 6.98 to 12.64, facilitating HMs precipitation. In heavily contaminated samples, hydrochar or modified hydrochars significantly decreased the Zn, Pb, and Cd TCLP values by 55%, 63%, and 50%, respectively. In moderately contaminated samples, the reduction was slight for Zn and Pb, with no significant change for Cd. SEP test results indicated that hydrochar or modified hydrochar in cement improves the transformation of the acid-soluble fraction to the residual fraction of Zn and Pb, but not for Cd-contaminated soil samples. Overall, these findings suggest that incorporating hydrochar or modified hydrochar as SCMs in cement contributes to reducing cement usage and CO<sub>2</sub> emissions while enhancing the stabilization efficiency of certain heavy metals in contaminated soils.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"512"},"PeriodicalIF":3.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study concentrated on determining the levels of uranium present in drinking water samples obtained from various locations throughout the Shahdol district in Madhya Pradesh, India. In this assessment a LED fluorimeter Quantalase (LF-2a) was utilized. Uranium, being a radioactive substance, can be hazardous to health when consumed in significant quantities over extended durations. The study found that the average uranium concentration was 167.91 µg/L. 82% of samples exceeded recommended limits, emphasizing the essential aspect of this study. The study utilizes the age-specific biokinetic model developed by the International Commission on Radiological Protection to examine uranium distribution across various organs. Using dosimetric model, the study provides a comprehensive health risk analysis by assessing the chemical toxicity and the radiation dosages received by particular organs. Longitudinal studies on uranium distribution across different organs and tissues showed that the kidneys, liver, non-exchangeable bone volume, and soft tissues are the primary locations where uranium accumulates.
这项研究的重点是测定从印度中央邦沙赫多尔区各地采集的饮用水样本中的铀含量。在评估过程中使用了 LED 荧光仪 Quantalase (LF-2a)。铀是一种放射性物质,长期大量摄入会危害健康。研究发现,铀的平均浓度为 167.91 微克/升。82% 的样本超过了建议限值,这强调了这项研究的重要性。该研究利用国际辐射防护委员会开发的特定年龄生物动力学模型来研究铀在各器官中的分布情况。利用剂量模型,该研究通过评估化学毒性和特定器官接受的辐射剂量,提供了全面的健康风险分析。关于铀在不同器官和组织中分布的纵向研究表明,肾脏、肝脏、非交换性骨量和软组织是铀的主要累积部位。
{"title":"Risk assessment of uranium in water sources near coal mines and in human organs of Shahdol District, Madhya Pradesh, using biokinetic modelling.","authors":"Garima, Babita, Amanjeet, Navish Kataria, Ashutosh Bhardwaj, Rekha Dhiman, Sawan Chaudhary","doi":"10.1007/s10653-024-02294-8","DOIUrl":"https://doi.org/10.1007/s10653-024-02294-8","url":null,"abstract":"<p><p>This study concentrated on determining the levels of uranium present in drinking water samples obtained from various locations throughout the Shahdol district in Madhya Pradesh, India. In this assessment a LED fluorimeter Quantalase (LF-2a) was utilized. Uranium, being a radioactive substance, can be hazardous to health when consumed in significant quantities over extended durations. The study found that the average uranium concentration was 167.91 µg/L. 82% of samples exceeded recommended limits, emphasizing the essential aspect of this study. The study utilizes the age-specific biokinetic model developed by the International Commission on Radiological Protection to examine uranium distribution across various organs. Using dosimetric model, the study provides a comprehensive health risk analysis by assessing the chemical toxicity and the radiation dosages received by particular organs. Longitudinal studies on uranium distribution across different organs and tissues showed that the kidneys, liver, non-exchangeable bone volume, and soft tissues are the primary locations where uranium accumulates.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"513"},"PeriodicalIF":3.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1007/s10653-024-02287-7
Madhumitha Kumaresan, Anjali Vijayan, Mu Ramkumar, Neena Elezebeth Philip
Chronic kidney disease is globally recognized as a highly impactful non-communicable disease. The inability of early identification contributes to its high mortality rate and financial burden on affected individuals. Chronic kidney disease of uncertain etiology (CKDu) constitutes a significant global public health concern. This condition does not arise from traditional risk factors such as diabetes, hypertension, or glomerulonephritis. More than 150 articles were analysed to understand risk factors of CKDu. This study aimed to investigate the potential association between dissolved organic compounds, such as Polycyclic Aromatic Hydrocarbons and Humic Acid, and the incidence of CKDu. Through a comprehensive literature review, we identified CKDu clusters worldwide, including notable nephropathies, and explored their potential links with organic compounds. Our analysis revealed that organic compounds can leach from sediments and low-rank lignite deposits into groundwater, subsequently contaminating water supplies and food. These compounds have been implicated in the development of diabetes and increased heavy metal mobility, both of which are risk factors for kidney disease. Our findings suggest that exposure to organic compounds may contribute to the etiology of CKDu, underscoring the need for regular monitoring and establishment of baseline and threshold values in water and soil. We also emphasize the importance of analyzing organic compounds in groundwater in CKDu hotspots and establishing distinct registries for CKD and CKDu implementation.
{"title":"Unraveling the enigma: chronic kidney disease of unknown etiology and its causative factors with a specific focus on dissolved organic compounds in groundwater-reviews and future prospects.","authors":"Madhumitha Kumaresan, Anjali Vijayan, Mu Ramkumar, Neena Elezebeth Philip","doi":"10.1007/s10653-024-02287-7","DOIUrl":"https://doi.org/10.1007/s10653-024-02287-7","url":null,"abstract":"<p><p>Chronic kidney disease is globally recognized as a highly impactful non-communicable disease. The inability of early identification contributes to its high mortality rate and financial burden on affected individuals. Chronic kidney disease of uncertain etiology (CKDu) constitutes a significant global public health concern. This condition does not arise from traditional risk factors such as diabetes, hypertension, or glomerulonephritis. More than 150 articles were analysed to understand risk factors of CKDu. This study aimed to investigate the potential association between dissolved organic compounds, such as Polycyclic Aromatic Hydrocarbons and Humic Acid, and the incidence of CKDu. Through a comprehensive literature review, we identified CKDu clusters worldwide, including notable nephropathies, and explored their potential links with organic compounds. Our analysis revealed that organic compounds can leach from sediments and low-rank lignite deposits into groundwater, subsequently contaminating water supplies and food. These compounds have been implicated in the development of diabetes and increased heavy metal mobility, both of which are risk factors for kidney disease. Our findings suggest that exposure to organic compounds may contribute to the etiology of CKDu, underscoring the need for regular monitoring and establishment of baseline and threshold values in water and soil. We also emphasize the importance of analyzing organic compounds in groundwater in CKDu hotspots and establishing distinct registries for CKD and CKDu implementation.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"510"},"PeriodicalIF":3.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}