In Vitro and In Vivo Biocompatibility of Bacterial Cellulose

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-10-03 DOI:10.1002/jbm.b.35488
Vincent-Daniel Girard, Jérémie Chaussé, Martin Borduas, Émile Dubuc, Christian Iorio-Morin, Simon Brisebois, Patrick Vermette
{"title":"In Vitro and In Vivo Biocompatibility of Bacterial Cellulose","authors":"Vincent-Daniel Girard,&nbsp;Jérémie Chaussé,&nbsp;Martin Borduas,&nbsp;Émile Dubuc,&nbsp;Christian Iorio-Morin,&nbsp;Simon Brisebois,&nbsp;Patrick Vermette","doi":"10.1002/jbm.b.35488","DOIUrl":null,"url":null,"abstract":"<p>Bacterial cellulose is a unique biomaterial produced by various species of bacteria that offers a range of potential applications in the biomedical field. To provide a cost-effective alternative to soft-tissue implants used in cavity infills, remodeling, and subdermal wound healing, in vitro cytotoxicity and in vivo biocompatibility of native bacterial cellulose were investigated. Cytotoxicity was assessed using a metabolic assay on Swiss 3T3 fibroblasts and INS-1832/13 rat insulinoma. Results showed no cytotoxicity, whether the cells were seeded over or under the bacterial cellulose scaffolds. Biocompatibility was performed on Sprague–Dawley rats (males and females, 8 weeks old) by implanting bacterial cellulose membranes subcutaneously for 1 or 12 weeks. The explanted scaffolds were then sliced and stained with hematoxylin and eosin for histological characterization. The first series of results revealed acute and chronic inflammation persisting over 12 weeks. Examination of the explants indicated a high number of granulocytes within the periphery of the bacterial cellulose, suggesting the presence of endotoxins within the membrane, confirmed by a Limulus amebocyte lysate test. This discovery motivated the development of non-pyrogenic bacterial cellulose scaffolds. Following this, a second series of animal experiments was done, in which materials were implanted for 1 or 2 weeks. The results revealed mild inflammation 1 week after implantation, which then diminished to minimal inflammation after 2 weeks. Altogether, this study highlights that unmodified, purified native bacterial cellulose membranes may be used as a cost-effective biomedical device provided that proper endotoxin clearance is achieved.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35488","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35488","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial cellulose is a unique biomaterial produced by various species of bacteria that offers a range of potential applications in the biomedical field. To provide a cost-effective alternative to soft-tissue implants used in cavity infills, remodeling, and subdermal wound healing, in vitro cytotoxicity and in vivo biocompatibility of native bacterial cellulose were investigated. Cytotoxicity was assessed using a metabolic assay on Swiss 3T3 fibroblasts and INS-1832/13 rat insulinoma. Results showed no cytotoxicity, whether the cells were seeded over or under the bacterial cellulose scaffolds. Biocompatibility was performed on Sprague–Dawley rats (males and females, 8 weeks old) by implanting bacterial cellulose membranes subcutaneously for 1 or 12 weeks. The explanted scaffolds were then sliced and stained with hematoxylin and eosin for histological characterization. The first series of results revealed acute and chronic inflammation persisting over 12 weeks. Examination of the explants indicated a high number of granulocytes within the periphery of the bacterial cellulose, suggesting the presence of endotoxins within the membrane, confirmed by a Limulus amebocyte lysate test. This discovery motivated the development of non-pyrogenic bacterial cellulose scaffolds. Following this, a second series of animal experiments was done, in which materials were implanted for 1 or 2 weeks. The results revealed mild inflammation 1 week after implantation, which then diminished to minimal inflammation after 2 weeks. Altogether, this study highlights that unmodified, purified native bacterial cellulose membranes may be used as a cost-effective biomedical device provided that proper endotoxin clearance is achieved.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌纤维素的体外和体内生物相容性。
细菌纤维素是由各种细菌产生的一种独特的生物材料,在生物医学领域具有广泛的应用潜力。为了给用于空腔填充、重塑和皮下伤口愈合的软组织植入物提供一种具有成本效益的替代品,研究人员对原生细菌纤维素的体外细胞毒性和体内生物相容性进行了调查。细胞毒性是通过对瑞士 3T3 成纤维细胞和 INS-1832/13 大鼠胰岛素瘤进行代谢试验来评估的。结果表明,无论细胞种在细菌纤维素支架上还是下,都不会产生细胞毒性。通过将细菌纤维素膜植入皮下 1 周或 12 周,对 Sprague-Dawley 大鼠(雄性和雌性,8 周大)进行了生物相容性测试。然后将取出的支架切片,用苏木精和伊红染色,进行组织学鉴定。第一组结果显示,急性和慢性炎症持续了 12 周。对外植体的检查显示,细菌纤维素外围有大量粒细胞,这表明膜内存在内毒素,并通过纤毛虫卵母细胞裂解物检测得到证实。这一发现推动了无热原细菌纤维素支架的开发。随后,又进行了第二轮动物实验,将材料植入 1 或 2 周。结果显示,植入 1 周后出现轻微炎症,2 周后炎症减轻到最低程度。总之,这项研究强调,未经改性、纯化的原生细菌纤维素膜可用作一种具有成本效益的生物医学设备,前提是要实现适当的内毒素清除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE) Issue Information Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity In Vitro and In Vivo Biocompatibility of Bacterial Cellulose Molecular Biomarkers for In Vitro Thrombogenicity Assessment of Medical Device Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1