Johannes Martin, Marcus Michaelis, Saša Petrović, Anne-Catherine Lehnen, Yannic Müllers, Petra Wendler, Heiko M Möller, Matthias Hartlieb, Ulrich Glebe
{"title":"Application of Sortase-Mediated Ligation for the Synthesis of Block Copolymers and Protein-Polymer Conjugates.","authors":"Johannes Martin, Marcus Michaelis, Saša Petrović, Anne-Catherine Lehnen, Yannic Müllers, Petra Wendler, Heiko M Möller, Matthias Hartlieb, Ulrich Glebe","doi":"10.1002/mabi.202400316","DOIUrl":null,"url":null,"abstract":"<p><p>Sortase-mediated ligation (SML) has become a powerful tool for site-specific protein modification. However, sortase A (SrtA) suffers from low catalytic efficiency and mediates an equilibrium reaction. Therefore, ligations with large macromolecules may be challenging. Here, the synthesis of polymeric building blocks for sortase-mediated ligation constituting peptide-polymers with either the recognition sequence for sortase A (LPX<sub>1</sub>TGX<sub>2</sub>) or its nucleophilic counterpart (G<sub>x</sub>) is demonstrated. The peptide-polymers are synthesized by solid-phase peptide synthesis followed by photo-iniferter (PI) reversible addition-fragmentation chain-transfer (RAFT) polymerization of various monomers. The building blocks are subsequently utilized to investigate possibilities and limitations when using macromolecules in SML. In particular, diblock copolymers are obtained even when using the orthogonal building blocks in equimolar ratio by exploiting a technique to shift the reaction equilibrium. However, ligations of two polymers can not be achieved when the degree of polymerization exceeds 100. Subsequently, C-terminal protein-polymer conjugates are synthesized. Several polymers are utilized that can replace the omnipresent polyethylene glycol (PEG) in future therapeutics. The conjugation is exemplified with a nanobody that is known for efficient neutralization of SARS-CoV-2. The study demonstrates a universal approach to polymer-LPX<sub>1</sub>TGX<sub>2</sub> and G<sub>x</sub>-polymer building blocks and gives insight into their application in SML.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400316"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400316","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sortase-mediated ligation (SML) has become a powerful tool for site-specific protein modification. However, sortase A (SrtA) suffers from low catalytic efficiency and mediates an equilibrium reaction. Therefore, ligations with large macromolecules may be challenging. Here, the synthesis of polymeric building blocks for sortase-mediated ligation constituting peptide-polymers with either the recognition sequence for sortase A (LPX1TGX2) or its nucleophilic counterpart (Gx) is demonstrated. The peptide-polymers are synthesized by solid-phase peptide synthesis followed by photo-iniferter (PI) reversible addition-fragmentation chain-transfer (RAFT) polymerization of various monomers. The building blocks are subsequently utilized to investigate possibilities and limitations when using macromolecules in SML. In particular, diblock copolymers are obtained even when using the orthogonal building blocks in equimolar ratio by exploiting a technique to shift the reaction equilibrium. However, ligations of two polymers can not be achieved when the degree of polymerization exceeds 100. Subsequently, C-terminal protein-polymer conjugates are synthesized. Several polymers are utilized that can replace the omnipresent polyethylene glycol (PEG) in future therapeutics. The conjugation is exemplified with a nanobody that is known for efficient neutralization of SARS-CoV-2. The study demonstrates a universal approach to polymer-LPX1TGX2 and Gx-polymer building blocks and gives insight into their application in SML.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.