Potential of oleaginous microbes for lipid accumulation and renewable energy generation.

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY World journal of microbiology & biotechnology Pub Date : 2024-10-03 DOI:10.1007/s11274-024-04145-1
Yulu Yang, Mohammed Jalalah, Saeed A Alsareii, Farid A Harraz, Nandini Thakur, Yuanzhang Zheng, Adel I Alalawy, Mostafa Koutb, El-Sayed Salama
{"title":"Potential of oleaginous microbes for lipid accumulation and renewable energy generation.","authors":"Yulu Yang, Mohammed Jalalah, Saeed A Alsareii, Farid A Harraz, Nandini Thakur, Yuanzhang Zheng, Adel I Alalawy, Mostafa Koutb, El-Sayed Salama","doi":"10.1007/s11274-024-04145-1","DOIUrl":null,"url":null,"abstract":"<p><p>Biocomponents (such as lipids) accumulate in oleaginous microorganisms and could be used for renewable energy production. Oleaginous microbes are characterized by their ability to accumulate high levels of lipids, which can be converted into biodiesel. The oleaginous microbes (including microalgae, bacteria, yeast, and fungi) can utilize diverse substrates. Thus, in this study, commercially viable oleaginous microorganisms are comparatively summarized for their growth conditions, substrate utilization, and applications in biotechnological processes. Lipid content is species-dependent, as are culture conditions (such as temperature, pH, nutrients, and culture time) and substrates. Lipid production can be increased by selecting suitable microorganisms and substrates, optimizing environmental conditions, and using genetic engineering techniques. In addition, the emphasis on downstream processes (including harvesting, cell disruption, lipid extraction, and transesterification) highlights their critical role in enhancing cost-effectiveness. Oleaginous microorganisms are potential candidates for lipid biosynthesis and could play a key role in meeting the energy needs of the world in the future.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"337"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04145-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biocomponents (such as lipids) accumulate in oleaginous microorganisms and could be used for renewable energy production. Oleaginous microbes are characterized by their ability to accumulate high levels of lipids, which can be converted into biodiesel. The oleaginous microbes (including microalgae, bacteria, yeast, and fungi) can utilize diverse substrates. Thus, in this study, commercially viable oleaginous microorganisms are comparatively summarized for their growth conditions, substrate utilization, and applications in biotechnological processes. Lipid content is species-dependent, as are culture conditions (such as temperature, pH, nutrients, and culture time) and substrates. Lipid production can be increased by selecting suitable microorganisms and substrates, optimizing environmental conditions, and using genetic engineering techniques. In addition, the emphasis on downstream processes (including harvesting, cell disruption, lipid extraction, and transesterification) highlights their critical role in enhancing cost-effectiveness. Oleaginous microorganisms are potential candidates for lipid biosynthesis and could play a key role in meeting the energy needs of the world in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含油微生物在脂质积累和可再生能源发电方面的潜力。
生物成分(如脂质)在含油微生物中积累,可用于生产可再生能源。含油微生物的特点是能够积累大量脂质,并可将其转化为生物柴油。含油微生物(包括微藻、细菌、酵母和真菌)可以利用多种底物。因此,本研究对商业上可行的含油微生物的生长条件、底物利用和在生物技术过程中的应用进行了比较总结。脂质含量与培养条件(如温度、pH 值、养分和培养时间)和底物一样,与物种有关。通过选择合适的微生物和底物、优化环境条件以及使用基因工程技术,可以提高脂质的产量。此外,对下游工艺(包括收获、细胞破碎、脂质提取和酯交换)的强调突出了它们在提高成本效益方面的关键作用。油脂微生物是脂质生物合成的潜在候选者,可在满足未来世界能源需求方面发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
期刊最新文献
Microbiome interactions: Acinetobacter baumannii biofilms as a co-factor in oral cancer progression. Biotransformation of enrofloxacin-copper combined pollutant in aqueous environments by fungus Cladosporium cladosporioides (CGMCC 40504). In silico characterization of Rhodotorula toruloides ELO-like elongases and production of very-long-chain fatty acids by expressing Rtelo2, RtKCR, RtHCD, and RtECR through IRES-mediated bicistrons. Rhamnolipid production from waste cooking oil by a newly isolated thermo- and salt-tolerant Pseudomonas aeruginosa GH01. Unveiling the chromate stress response in the marine bacterium Bacillus enclensis AGM_Cr8: a multifaceted investigation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1