Yunzhen Huang , Zhe Liu , Junqin Zhang , Jiawen Dong , Linlin Li , Yong Xiang , Ruihuan Kuang , Shimin Gao , Minhua Sun , Yongjie Liu
{"title":"Evaluation of Tembusu virus single-round infectious particle as vaccine vector in chickens","authors":"Yunzhen Huang , Zhe Liu , Junqin Zhang , Jiawen Dong , Linlin Li , Yong Xiang , Ruihuan Kuang , Shimin Gao , Minhua Sun , Yongjie Liu","doi":"10.1016/j.vetmic.2024.110270","DOIUrl":null,"url":null,"abstract":"<div><div>Orthoflaviviruses are single-stranded RNA viruses characterized by highly efficient self-amplification of RNA in host cells, which makes them attractive vehicles for vaccines. Numerous preclinical and clinical studies have demonstrated the efficacy and safety of orthoflavivirus replicon vectors for vaccine development. In this study, we constructed Tembusu virus (TMUV) replicon-based single-round infectious particles (SRIPs) as vaccine development platform. To evaluate the potential of TMUV SRIPs as vaccines, we generated SRIPs that express the heterologous Fowl adenovirus 4 (FAdV-4) fiber2 protein and fiber2 head domain, named TMUVRP-fiber2 and TMUVRP-fiber2H, respectively. To assess the immunogenicity of the TMUV SRIPs, SPF chicks were intramuscularly inoculated twice. Our results showed that the TMUVRP-fiber2 vaccines elicited high levels of neutralizing antibodies. Challenge experiments showed that TMUVRP-fiber2 provided full protection against virulent FAdV-4 and significantly reduced viral shedding. Moreover, the immunogenicity of TMUVRP-fiber2H was significantly lower than that of TMUVRP-fiber2, which was reflected in the neutralizing antibody titer, survival rate, and virus shedding after challenge. Therefore, our results suggested that TMUV SRIPs are a promising novel platform for the development of vaccines for existing and emerging poultry diseases.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"298 ","pages":"Article 110270"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037811352400292X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Orthoflaviviruses are single-stranded RNA viruses characterized by highly efficient self-amplification of RNA in host cells, which makes them attractive vehicles for vaccines. Numerous preclinical and clinical studies have demonstrated the efficacy and safety of orthoflavivirus replicon vectors for vaccine development. In this study, we constructed Tembusu virus (TMUV) replicon-based single-round infectious particles (SRIPs) as vaccine development platform. To evaluate the potential of TMUV SRIPs as vaccines, we generated SRIPs that express the heterologous Fowl adenovirus 4 (FAdV-4) fiber2 protein and fiber2 head domain, named TMUVRP-fiber2 and TMUVRP-fiber2H, respectively. To assess the immunogenicity of the TMUV SRIPs, SPF chicks were intramuscularly inoculated twice. Our results showed that the TMUVRP-fiber2 vaccines elicited high levels of neutralizing antibodies. Challenge experiments showed that TMUVRP-fiber2 provided full protection against virulent FAdV-4 and significantly reduced viral shedding. Moreover, the immunogenicity of TMUVRP-fiber2H was significantly lower than that of TMUVRP-fiber2, which was reflected in the neutralizing antibody titer, survival rate, and virus shedding after challenge. Therefore, our results suggested that TMUV SRIPs are a promising novel platform for the development of vaccines for existing and emerging poultry diseases.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.