Noisy-Intermediate-Scale Quantum Power System State Estimation

iEnergy Pub Date : 2024-09-01 DOI:10.23919/IEN.2024.0019
Fei Feng;Peng Zhang;Yifan Zhou;Yacov A. Shamash
{"title":"Noisy-Intermediate-Scale Quantum Power System State Estimation","authors":"Fei Feng;Peng Zhang;Yifan Zhou;Yacov A. Shamash","doi":"10.23919/IEN.2024.0019","DOIUrl":null,"url":null,"abstract":"Quantum power system state estimation (QPSSE) offers an inspiring direction for tackling the challenge of state estimation through quantum computing. Nevertheless, the current bottlenecks originate from the scarcity of practical and scalable QPSSE methodologies in the noisy intermediate-scale quantum (NISQ) era. This paper devises a NISQ-QPSSE algorithm that facilitates state estimation on real NISQ devices. Our new contributions include: (1) A variational quantum circuit (VQC)-based QPSSE formulation that empowers QPSSE analysis utilizing shallow-depth quantum circuits; (2) A variational quantum linear solver (VQLS)-based QPSSE solver integrating QPSSE iterations with VQC optimization; (3) An advanced NISQ-compatible QPSSE methodology for tackling the measurement and coefficient matrix issues on real quantum computers; (4) A noise-resilient method to alleviate the detrimental effects of noise disturbances. The encouraging test results on the simulator and real-scale systems affirm the precision, universality, and scalability of our QPSSE algorithm and demonstrate the vast potential of QPSSE in the thriving NISQ era.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 3","pages":"135-141"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703139","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10703139/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum power system state estimation (QPSSE) offers an inspiring direction for tackling the challenge of state estimation through quantum computing. Nevertheless, the current bottlenecks originate from the scarcity of practical and scalable QPSSE methodologies in the noisy intermediate-scale quantum (NISQ) era. This paper devises a NISQ-QPSSE algorithm that facilitates state estimation on real NISQ devices. Our new contributions include: (1) A variational quantum circuit (VQC)-based QPSSE formulation that empowers QPSSE analysis utilizing shallow-depth quantum circuits; (2) A variational quantum linear solver (VQLS)-based QPSSE solver integrating QPSSE iterations with VQC optimization; (3) An advanced NISQ-compatible QPSSE methodology for tackling the measurement and coefficient matrix issues on real quantum computers; (4) A noise-resilient method to alleviate the detrimental effects of noise disturbances. The encouraging test results on the simulator and real-scale systems affirm the precision, universality, and scalability of our QPSSE algorithm and demonstrate the vast potential of QPSSE in the thriving NISQ era.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噪声-中量级量子电力系统状态估计
量子电力系统状态估计(QPSSE)为通过量子计算应对状态估计挑战提供了一个鼓舞人心的方向。然而,目前的瓶颈在于噪声中量子(NISQ)时代缺乏实用且可扩展的 QPSSE 方法。本文设计了一种 NISQ-QPSSE 算法,有助于在真正的 NISQ 设备上进行状态估计。我们的新贡献包括(1) 基于可变量子电路(VQC)的 QPSSE 表述,可利用浅深度量子电路进行 QPSSE 分析;(2) 基于可变量子线性求解器(VQLS)的 QPSSE 求解器,将 QPSSE 迭代与 VQC 优化整合在一起;(3) 一种先进的与 NISQ 兼容的 QPSSE 方法,用于解决实际量子计算机上的测量和系数矩阵问题;(4) 一种抗噪声方法,用于减轻噪声干扰的不利影响。在模拟器和真实规模系统上令人鼓舞的测试结果肯定了我们的 QPSSE 算法的精确性、通用性和可扩展性,并证明了 QPSSE 在蓬勃发展的 NISQ 时代的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contents Front Cover Methods of Suppressing Ion Migration in n-i-p Perovskite Solar Cells Artificial Intelligence Techniques for Stability Analysis in Modern Power Systems Intelligent Adjustment for Power System Operation Mode Based on Deep Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1