In the past 10 years, perovskite solar cells (PSCs) have undergone extremely rapid development, with a record certified power conversion efficiency (PCE) of 26.7%, which is very close to the limit efficiency. However, the inherent instability caused by ion migration impedes the realization of long-term operationally stable PSCs. In this review, the types and mechanisms of ion migration occurring in various functional layers of negative-intrinsic-positive (n-i-p) PSCs are summarized. Additionally, methods of suppressing ion migration are systematically discussed. Finally, the prospects of current challenges and future development directions are proposed to advance the achievement of high-performance regular PSCs with high stability and PCE.
{"title":"Methods of Suppressing Ion Migration in n-i-p Perovskite Solar Cells","authors":"Dongmei He;Yue Yu;Xinxing Liu;Xuxia Shai;Jiangzhao Chen","doi":"10.23919/IEN.2024.0029","DOIUrl":"https://doi.org/10.23919/IEN.2024.0029","url":null,"abstract":"In the past 10 years, perovskite solar cells (PSCs) have undergone extremely rapid development, with a record certified power conversion efficiency (PCE) of 26.7%, which is very close to the limit efficiency. However, the inherent instability caused by ion migration impedes the realization of long-term operationally stable PSCs. In this review, the types and mechanisms of ion migration occurring in various functional layers of negative-intrinsic-positive (n-i-p) PSCs are summarized. Additionally, methods of suppressing ion migration are systematically discussed. Finally, the prospects of current challenges and future development directions are proposed to advance the achievement of high-performance regular PSCs with high stability and PCE.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 4","pages":"242-251"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818562","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study introduces a novel approach to realizing compact high-field superconducting magnets by enabling a closed-loop high temperature superconducting (HTS) coil through magnetization. A circular closed-loop HTS coil is fabricated with a low resistive joint for field cooling magnetization. The HTS coil achieved a trapped field with only a 0.0087% decay in central field over 30 minutes. More interestingly, the central trapped field of 4.59 T exceeds the initial applied field of 4.5 T, while a peak trapped field of 6 T near the inner edge of the HTS coil, is identified through further numerical investigation. This phenomenon differs from the trapped field distributions observed in HTS bulks and stacks, where the trapped cannot exceed the applied one. Unique distributions of current density and magnetic field are identified as the reason for the trapped field exceeding the applied field. This study offers a new way to develop compact HTS magnets for a range of high-field applications such as superconducting magnetic energy storage (SMES) systems, superconducting machines, Maglev and proposes a viable method for amplifying the field strength beyond that of existing magnetic field source devices.
{"title":"A Novel Trapped Field Magnet Enabled by a Quasi-Operational HTS Coil","authors":"Hengpei Liao;Aleksandr Shchukin;Roshan Parajuli;Xavier Chaud;Jung-Bin Song;Min Zhang;Weijia Yuan","doi":"10.23919/IEN.2024.0030","DOIUrl":"https://doi.org/10.23919/IEN.2024.0030","url":null,"abstract":"This study introduces a novel approach to realizing compact high-field superconducting magnets by enabling a closed-loop high temperature superconducting (HTS) coil through magnetization. A circular closed-loop HTS coil is fabricated with a low resistive joint for field cooling magnetization. The HTS coil achieved a trapped field with only a 0.0087% decay in central field over 30 minutes. More interestingly, the central trapped field of 4.59 T exceeds the initial applied field of 4.5 T, while a peak trapped field of 6 T near the inner edge of the HTS coil, is identified through further numerical investigation. This phenomenon differs from the trapped field distributions observed in HTS bulks and stacks, where the trapped cannot exceed the applied one. Unique distributions of current density and magnetic field are identified as the reason for the trapped field exceeding the applied field. This study offers a new way to develop compact HTS magnets for a range of high-field applications such as superconducting magnetic energy storage (SMES) systems, superconducting machines, Maglev and proposes a viable method for amplifying the field strength beyond that of existing magnetic field source devices.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"3 4","pages":"261-267"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818558","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the primary barriers to the advancement of high-efficiency energy conversion technologies is the Shockley-Queisser limit, which imposes a fundamental efficiency constraint on single-junction solar cells. The advent of multi-junction solar cells provides a formidable alternative to this obstacle. Among these, organic-inorganic perovskite solar cells (PSCs) have captured substantial interest due to their outstanding optoelectronic properties, including tunable bandgaps and high-power conversion efficiencies, positioning them as prime candidates for multi-junction photovoltaic systems. We give a review of the latest advancements in four-terminal (4T) perovskite tandem solar cells (TSCs), emphasizing four pertinent configurations: perovskite-silicon (PVK/Si), perovskite-perovskite (PVK/PVK), perovskite-Cu(In,Ga)Se 2