VLOG: Vehicle Identity Verification Based on Local and Global Behavior Analysis

IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS IEEE Transactions on Computational Social Systems Pub Date : 2024-06-28 DOI:10.1109/TCSS.2024.3414587
Zhong Li;Yubo Kong;Jie Luo;Yifei Meng;Changjun Jiang
{"title":"VLOG: Vehicle Identity Verification Based on Local and Global Behavior Analysis","authors":"Zhong Li;Yubo Kong;Jie Luo;Yifei Meng;Changjun Jiang","doi":"10.1109/TCSS.2024.3414587","DOIUrl":null,"url":null,"abstract":"Internet of Vehicles (IoV) improves traffic safety and efficiency by wireless communications among vehicles and infrastructures. To ensure secure communications in IoV, the problem of vehicle identity security must be solved before deployment. In this article, we propose a quick-response behavior-based vehicle identity verification method, called VLOG, for solving identity theft in IoV. This method is based on the idea of a vehicle usually having relatively stable traveling habit/behaivor. If we detect unusual behavior, the vehicle's identity may be stolen. VLOG captures vehicles’ latent behavior models from local and global two aspects, and further merges local and global models into a comprehensive behavior-based identity verification model. In the local part, we give a 2-D Gaussian model to fit the behavior data. In the global part, we learn vehicles’ traveling preferences under secure multiparty computation framework with considering the behavior volatility. The results of experiments based on a real-world vehicular trace dataset show the best performance of VLOG in terms of accuracy, F1 score, and cost. Meanwhile, VLOG also performs well in the area under the curve and precision-recall curve. Besides, since our model is preprepared, when a vehicle is required to be detected, the verification response time is short.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"11 5","pages":"7032-7044"},"PeriodicalIF":4.5000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10577444/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Internet of Vehicles (IoV) improves traffic safety and efficiency by wireless communications among vehicles and infrastructures. To ensure secure communications in IoV, the problem of vehicle identity security must be solved before deployment. In this article, we propose a quick-response behavior-based vehicle identity verification method, called VLOG, for solving identity theft in IoV. This method is based on the idea of a vehicle usually having relatively stable traveling habit/behaivor. If we detect unusual behavior, the vehicle's identity may be stolen. VLOG captures vehicles’ latent behavior models from local and global two aspects, and further merges local and global models into a comprehensive behavior-based identity verification model. In the local part, we give a 2-D Gaussian model to fit the behavior data. In the global part, we learn vehicles’ traveling preferences under secure multiparty computation framework with considering the behavior volatility. The results of experiments based on a real-world vehicular trace dataset show the best performance of VLOG in terms of accuracy, F1 score, and cost. Meanwhile, VLOG also performs well in the area under the curve and precision-recall curve. Besides, since our model is preprepared, when a vehicle is required to be detected, the verification response time is short.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VLOG:基于本地和全局行为分析的车辆身份验证
车联网(IoV)通过车辆和基础设施之间的无线通信提高了交通安全和效率。为确保 IoV 的安全通信,必须在部署前解决车辆身份安全问题。本文提出了一种基于快速响应行为的车辆身份验证方法,称为 VLOG,用于解决物联网中的身份盗窃问题。该方法基于车辆通常具有相对稳定的行驶习惯/行为的理念。如果我们检测到异常行为,车辆的身份就可能被盗用。VLOG 从局部和全局两个方面捕捉车辆的潜在行为模型,并进一步将局部模型和全局模型合并为基于行为的综合身份验证模型。在本地部分,我们给出一个二维高斯模型来拟合行为数据。在全局部分,我们在安全的多方计算框架下学习车辆的行驶偏好,并考虑行为的不稳定性。基于真实世界车辆轨迹数据集的实验结果表明,VLOG 在准确率、F1 分数和成本方面表现最佳。同时,VLOG 在曲线下面积和精度-召回曲线方面也表现出色。此外,由于我们的模型是预先准备好的,因此当需要检测车辆时,验证响应时间很短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Computational Social Systems
IEEE Transactions on Computational Social Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
10.00
自引率
20.00%
发文量
316
期刊介绍: IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.
期刊最新文献
Table of Contents IEEE Systems, Man, and Cybernetics Society Information IEEE Transactions on Computational Social Systems Information for Authors Creating Healthier Living Environments: The Role of Soundscapes in Promoting Mental Health and Well-Being IEEE Transactions on Computational Social Systems Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1