首页 > 最新文献

IEEE Transactions on Computational Social Systems最新文献

英文 中文
2025 Index IEEE Transactions on Computational Social Systems Vol. 12 计算社会系统学报,第12卷
IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2026-01-09 DOI: 10.1109/TCSS.2026.3652476
{"title":"2025 Index IEEE Transactions on Computational Social Systems Vol. 12","authors":"","doi":"10.1109/TCSS.2026.3652476","DOIUrl":"https://doi.org/10.1109/TCSS.2026.3652476","url":null,"abstract":"","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 6","pages":"1-98"},"PeriodicalIF":4.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11345504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145929412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Computational Social Systems Information for Authors IEEE计算社会系统信息汇刊
IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-12-02 DOI: 10.1109/TCSS.2025.3632585
{"title":"IEEE Transactions on Computational Social Systems Information for Authors","authors":"","doi":"10.1109/TCSS.2025.3632585","DOIUrl":"https://doi.org/10.1109/TCSS.2025.3632585","url":null,"abstract":"","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 6","pages":"C4-C4"},"PeriodicalIF":4.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11272954","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Systems, Man, and Cybernetics Society Information IEEE系统、人与控制论学会信息
IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-12-02 DOI: 10.1109/TCSS.2025.3632503
{"title":"IEEE Systems, Man, and Cybernetics Society Information","authors":"","doi":"10.1109/TCSS.2025.3632503","DOIUrl":"https://doi.org/10.1109/TCSS.2025.3632503","url":null,"abstract":"","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 6","pages":"C3-C3"},"PeriodicalIF":4.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11272955","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MLFormer: Unleashing Efficiency Without Attention for Multimodal Knowledge Graph Embedding MLFormer:释放多模态知识图嵌入的效率
IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-11-03 DOI: 10.1109/TCSS.2025.3620089
Meng Wang;Changyu Li;Feiyu Chen;Jie Shao;Ke Qin;Shuang Liang
Multimodal knowledge graphs (MMKGs) have gained widespread adoption across various domains. However, existing transformer-based methods for MMKG representation learning primarily focus on enhancing representation performance, while overlooking time and memory costs, which reduces model efficiency. To tackle these limitations, we introduce a multimodal lightweight transformer (MLFormer) model, which not only ensures robust representation capabilities but also considerably improves computational efficiency. We find that the self-attention mechanism in transformers leads to substantial performance overheads. As a result, we optimize the traditional MMKGE model in two aspects: modality processing and modality fusion, by incorporating a filter gate and Fourier transform. Our experimental results on real-world multimodal knowledge graph completion datasets demonstrate that MLFormer achieves significant improvements in computational efficiency while maintaining competitive performance.
多模态知识图(MMKGs)已经在各个领域得到了广泛的应用。然而,现有的基于变压器的MMKG表示学习方法主要侧重于提高表示性能,而忽略了时间和内存成本,从而降低了模型效率。为了解决这些限制,我们引入了一个多模态轻量级变压器(MLFormer)模型,该模型不仅保证了鲁棒的表示能力,而且大大提高了计算效率。我们发现变压器中的自关注机制导致了大量的性能开销。因此,我们通过引入滤波门和傅里叶变换,从模态处理和模态融合两个方面对传统MMKGE模型进行了优化。我们在真实世界的多模态知识图谱完成数据集上的实验结果表明,MLFormer在保持竞争性能的同时显著提高了计算效率。
{"title":"MLFormer: Unleashing Efficiency Without Attention for Multimodal Knowledge Graph Embedding","authors":"Meng Wang;Changyu Li;Feiyu Chen;Jie Shao;Ke Qin;Shuang Liang","doi":"10.1109/TCSS.2025.3620089","DOIUrl":"https://doi.org/10.1109/TCSS.2025.3620089","url":null,"abstract":"Multimodal knowledge graphs (MMKGs) have gained widespread adoption across various domains. However, existing transformer-based methods for MMKG representation learning primarily focus on enhancing representation performance, while overlooking time and memory costs, which reduces model efficiency. To tackle these limitations, we introduce a multimodal lightweight transformer (MLFormer) model, which not only ensures robust representation capabilities but also considerably improves computational efficiency. We find that the self-attention mechanism in transformers leads to substantial performance overheads. As a result, we optimize the traditional MMKGE model in two aspects: modality processing and modality fusion, by incorporating a filter gate and Fourier transform. Our experimental results on real-world multimodal knowledge graph completion datasets demonstrate that MLFormer achieves significant improvements in computational efficiency while maintaining competitive performance.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 6","pages":"5536-5549"},"PeriodicalIF":4.5,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Computational Social Systems Information for Authors IEEE计算社会系统信息汇刊
IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-10-06 DOI: 10.1109/TCSS.2025.3608423
{"title":"IEEE Transactions on Computational Social Systems Information for Authors","authors":"","doi":"10.1109/TCSS.2025.3608423","DOIUrl":"https://doi.org/10.1109/TCSS.2025.3608423","url":null,"abstract":"","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 5","pages":"C4-C4"},"PeriodicalIF":4.5,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11194050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145230025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible Electrodes: Catalyzing Commercial Revolution of Brain–Computer Interfaces 柔性电极:催化脑机接口的商业革命
IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-10-06 DOI: 10.1109/TCSS.2025.3606586
Ran Cai;Donglei Chen;Lixin Dong;Bin Hu
{"title":"Flexible Electrodes: Catalyzing Commercial Revolution of Brain–Computer Interfaces","authors":"Ran Cai;Donglei Chen;Lixin Dong;Bin Hu","doi":"10.1109/TCSS.2025.3606586","DOIUrl":"https://doi.org/10.1109/TCSS.2025.3606586","url":null,"abstract":"","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 5","pages":"1947-1968"},"PeriodicalIF":4.5,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11193966","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145315352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Computational Social Systems Publication Information IEEE计算社会系统汇刊信息
IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-10-06 DOI: 10.1109/TCSS.2025.3608419
{"title":"IEEE Transactions on Computational Social Systems Publication Information","authors":"","doi":"10.1109/TCSS.2025.3608419","DOIUrl":"https://doi.org/10.1109/TCSS.2025.3608419","url":null,"abstract":"","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 5","pages":"C2-C2"},"PeriodicalIF":4.5,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11194049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145315350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Special Issue on Trends in Social Multimedia Computing: Models, Methodologies, and Applications 特刊:社会多媒体计算趋势:模型、方法和应用
IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-10-06 DOI: 10.1109/TCSS.2025.3606570
Amit Kumar Singh;Jungong Han;Stefano Berretti
{"title":"Guest Editorial: Special Issue on Trends in Social Multimedia Computing: Models, Methodologies, and Applications","authors":"Amit Kumar Singh;Jungong Han;Stefano Berretti","doi":"10.1109/TCSS.2025.3606570","DOIUrl":"https://doi.org/10.1109/TCSS.2025.3606570","url":null,"abstract":"","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 5","pages":"3747-3750"},"PeriodicalIF":4.5,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11193968","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145230028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Systems, Man, and Cybernetics Society Information IEEE系统、人与控制论学会信息
IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-10-06 DOI: 10.1109/TCSS.2025.3608421
{"title":"IEEE Systems, Man, and Cybernetics Society Information","authors":"","doi":"10.1109/TCSS.2025.3608421","DOIUrl":"https://doi.org/10.1109/TCSS.2025.3608421","url":null,"abstract":"","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 5","pages":"C3-C3"},"PeriodicalIF":4.5,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11193967","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145230019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsupervised Video Summarization Based on Spatiotemporal Semantic Graph and Enhanced Attention Mechanism 基于时空语义图和增强注意机制的无监督视频摘要
IF 4.5 2区 计算机科学 Q1 COMPUTER SCIENCE, CYBERNETICS Pub Date : 2025-07-10 DOI: 10.1109/TCSS.2025.3579570
Xin Cheng;Lei Yang;Rui Li
Generative adversarial networks (GANs) have demonstrated potential in enhancing keyframe selection and video reconstruction via adversarial training among unsupervised approaches. Nevertheless, GANs struggle to encapsulate the intricate spatiotemporal dynamics in videos, which is essential for producing coherent and informative summaries. To address these challenges, we introduce an unsupervised video summarization framework that synergistically integrates temporal–spatial semantic graphs (TSSGraphs) with a bilinear additive attention (BAA) mechanism. TSSGraphs are designed to effectively model temporal and spatial relationships among video frames by combining temporal convolution and dynamic edge convolution, thereby extracting salient features while mitigating model complexity. The BAA mechanism enhances the framework’s ability to capture critical motion information by addressing feature sparsity and eliminating redundant parameters, ensuring robust attention to significant motion dynamics. Experimental assessments on the SumMe and TVSum benchmark datasets reveal that our method attains improvements of up to 4.0% and 3.3% in F-score, respectively, compared to current methodologies. Moreover, our system demonstrates diminished parameter overhead throughout training and inference stages, particularly excelling in contexts with significant motion content.
生成对抗网络(GANs)在增强关键帧选择和视频重建方面已经显示出潜力,通过在无监督方法之间进行对抗训练。然而,gan很难在视频中封装复杂的时空动态,这对于产生连贯和信息丰富的摘要至关重要。为了解决这些挑战,我们引入了一个无监督视频摘要框架,该框架将时空语义图(TSSGraphs)与双线性可加性注意(BAA)机制协同集成。TSSGraphs通过时间卷积和动态边缘卷积的结合,有效地对视频帧之间的时空关系进行建模,从而在提取显著特征的同时降低模型复杂度。BAA机制通过处理特征稀疏性和消除冗余参数来增强框架捕获关键运动信息的能力,确保对重要运动动力学的鲁棒性关注。在SumMe和TVSum基准数据集上的实验评估表明,与现有方法相比,我们的方法在f分数上分别提高了4.0%和3.3%。此外,我们的系统在整个训练和推理阶段的参数开销减少,特别是在具有重要运动内容的环境中表现出色。
{"title":"Unsupervised Video Summarization Based on Spatiotemporal Semantic Graph and Enhanced Attention Mechanism","authors":"Xin Cheng;Lei Yang;Rui Li","doi":"10.1109/TCSS.2025.3579570","DOIUrl":"https://doi.org/10.1109/TCSS.2025.3579570","url":null,"abstract":"Generative adversarial networks (GANs) have demonstrated potential in enhancing keyframe selection and video reconstruction via adversarial training among unsupervised approaches. Nevertheless, GANs struggle to encapsulate the intricate spatiotemporal dynamics in videos, which is essential for producing coherent and informative summaries. To address these challenges, we introduce an unsupervised video summarization framework that synergistically integrates temporal–spatial semantic graphs (TSSGraphs) with a bilinear additive attention (BAA) mechanism. TSSGraphs are designed to effectively model temporal and spatial relationships among video frames by combining temporal convolution and dynamic edge convolution, thereby extracting salient features while mitigating model complexity. The BAA mechanism enhances the framework’s ability to capture critical motion information by addressing feature sparsity and eliminating redundant parameters, ensuring robust attention to significant motion dynamics. Experimental assessments on the SumMe and TVSum benchmark datasets reveal that our method attains improvements of up to 4.0% and 3.3% in F-score, respectively, compared to current methodologies. Moreover, our system demonstrates diminished parameter overhead throughout training and inference stages, particularly excelling in contexts with significant motion content.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 5","pages":"3751-3764"},"PeriodicalIF":4.5,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145230072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Computational Social Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1