{"title":"Generalized Population-Based Training for Hyperparameter Optimization in Reinforcement Learning","authors":"Hui Bai;Ran Cheng","doi":"10.1109/TETCI.2024.3389777","DOIUrl":null,"url":null,"abstract":"Hyperparameter optimization plays a key role in the machine learning domain. Its significance is especially pronounced in reinforcement learning (RL), where agents continuously interact with and adapt to their environments, requiring dynamic adjustments in their learning trajectories. To cater to this dynamicity, the Population-Based Training (PBT) was introduced, leveraging the collective intelligence of a population of agents learning simultaneously. However, PBT tends to favor high-performing agents, potentially neglecting the explorative potential of agents on the brink of significant advancements. To mitigate the limitations of PBT, we present the Generalized Population-Based Training (GPBT), a refined framework designed for enhanced granularity and flexibility in hyperparameter adaptation. Complementing GPBT, we further introduce Pairwise Learning (PL). Instead of merely focusing on elite agents, PL employs a comprehensive pairwise strategy to identify performance differentials and provide holistic guidance to underperforming agents. By integrating the capabilities of GPBT and PL, our approach significantly improves upon traditional PBT in terms of adaptability and computational efficiency. Rigorous empirical evaluations across a range of RL benchmarks confirm that our approach consistently outperforms not only the conventional PBT but also its Bayesian-optimized variant.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3450-3462"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10509566/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperparameter optimization plays a key role in the machine learning domain. Its significance is especially pronounced in reinforcement learning (RL), where agents continuously interact with and adapt to their environments, requiring dynamic adjustments in their learning trajectories. To cater to this dynamicity, the Population-Based Training (PBT) was introduced, leveraging the collective intelligence of a population of agents learning simultaneously. However, PBT tends to favor high-performing agents, potentially neglecting the explorative potential of agents on the brink of significant advancements. To mitigate the limitations of PBT, we present the Generalized Population-Based Training (GPBT), a refined framework designed for enhanced granularity and flexibility in hyperparameter adaptation. Complementing GPBT, we further introduce Pairwise Learning (PL). Instead of merely focusing on elite agents, PL employs a comprehensive pairwise strategy to identify performance differentials and provide holistic guidance to underperforming agents. By integrating the capabilities of GPBT and PL, our approach significantly improves upon traditional PBT in terms of adaptability and computational efficiency. Rigorous empirical evaluations across a range of RL benchmarks confirm that our approach consistently outperforms not only the conventional PBT but also its Bayesian-optimized variant.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.