State-Observer-Based Adaptive Fuzzy Event-Triggered Formation Control for Nonlinear Multiagent System

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Emerging Topics in Computational Intelligence Pub Date : 2024-04-01 DOI:10.1109/TETCI.2024.3377254
Shuai Sui;Dongyu Shen;Shaocheng Tong;C. L. Philip Chen
{"title":"State-Observer-Based Adaptive Fuzzy Event-Triggered Formation Control for Nonlinear Multiagent System","authors":"Shuai Sui;Dongyu Shen;Shaocheng Tong;C. L. Philip Chen","doi":"10.1109/TETCI.2024.3377254","DOIUrl":null,"url":null,"abstract":"This study examined the problemof event-triggered formation control for nonlinear multiagent systems (MASs) with unmeasured states. First, by applying fuzzy logic systems (FLSs), the identification of unknown nonlinearities could be achieved. To save communication resources, we introduce an event-triggered mechanism. And use the triggered output signal to construct the fuzzy state observer. Then, a formation control algorithm based on event-triggered is proposed through dynamic surface control (DSC) technology and adaptive backstepping control technology, combined with two new event-triggered conditions. Finally, using the Lyapunov theory, it can be shown that all closed-loop signals are bounded. The validity of the proposed scheme can be demonstrated through simulation verification.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3327-3338"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10487987/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study examined the problemof event-triggered formation control for nonlinear multiagent systems (MASs) with unmeasured states. First, by applying fuzzy logic systems (FLSs), the identification of unknown nonlinearities could be achieved. To save communication resources, we introduce an event-triggered mechanism. And use the triggered output signal to construct the fuzzy state observer. Then, a formation control algorithm based on event-triggered is proposed through dynamic surface control (DSC) technology and adaptive backstepping control technology, combined with two new event-triggered conditions. Finally, using the Lyapunov theory, it can be shown that all closed-loop signals are bounded. The validity of the proposed scheme can be demonstrated through simulation verification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于状态观测器的非线性多代理系统自适应模糊事件触发编队控制
本研究探讨了具有不可测量状态的非线性多代理系统(MAS)的事件触发编队控制问题。首先,通过应用模糊逻辑系统(FLS),可以实现未知非线性的识别。为了节省通信资源,我们引入了事件触发机制。并利用触发输出信号构建模糊状态观测器。然后,通过动态表面控制(DSC)技术和自适应反步进控制技术,结合两种新的事件触发条件,提出了一种基于事件触发的编队控制算法。最后,利用 Lyapunov 理论,可以证明所有闭环信号都是有界的。通过仿真验证,可以证明所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
期刊最新文献
Table of Contents IEEE Transactions on Emerging Topics in Computational Intelligence Publication Information IEEE Transactions on Emerging Topics in Computational Intelligence Information for Authors IEEE Computational Intelligence Society Information Decentralized Triggering and Event-Based Integral Reinforcement Learning for Multiplayer Differential Game Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1