{"title":"RAH! RecSys–Assistant–Human: A Human-Centered Recommendation Framework With LLM Agents","authors":"Yubo Shu;Haonan Zhang;Hansu Gu;Peng Zhang;Tun Lu;Dongsheng Li;Ning Gu","doi":"10.1109/TCSS.2024.3404039","DOIUrl":null,"url":null,"abstract":"The rapid evolution of the web has led to an exponential growth in content. Recommender systems play a crucial role in human–computer interaction (HCI) by tailoring content based on individual preferences. Despite their importance, challenges persist in balancing recommendation accuracy with user satisfaction, addressing biases while preserving user privacy, and solving cold-start problems in cross-domain situations. This research argues that addressing these issues is not solely the recommender systems’ responsibility, and a human-centered approach is vital. We introduce the recommender system, assistant, and human (RAH) framework, an innovative solution with large language model (LLM)-based agents such as perceive, learn, act, critic, and reflect, emphasizing the alignment with user personalities. The framework utilizes the learn-act-critic loop and a reflection mechanism for improving user alignment. Using the real-world data, our experiments demonstrate the RAH framework's efficacy in various recommendation domains, from reducing human burden to mitigating biases and enhancing user control. Notably, our contributions provide a human-centered recommendation framework that partners effectively with various recommendation models.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"11 5","pages":"6759-6770"},"PeriodicalIF":4.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10572486/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid evolution of the web has led to an exponential growth in content. Recommender systems play a crucial role in human–computer interaction (HCI) by tailoring content based on individual preferences. Despite their importance, challenges persist in balancing recommendation accuracy with user satisfaction, addressing biases while preserving user privacy, and solving cold-start problems in cross-domain situations. This research argues that addressing these issues is not solely the recommender systems’ responsibility, and a human-centered approach is vital. We introduce the recommender system, assistant, and human (RAH) framework, an innovative solution with large language model (LLM)-based agents such as perceive, learn, act, critic, and reflect, emphasizing the alignment with user personalities. The framework utilizes the learn-act-critic loop and a reflection mechanism for improving user alignment. Using the real-world data, our experiments demonstrate the RAH framework's efficacy in various recommendation domains, from reducing human burden to mitigating biases and enhancing user control. Notably, our contributions provide a human-centered recommendation framework that partners effectively with various recommendation models.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.