{"title":"Task Partitioning and Scheduling Based on Stochastic Policy Gradient in Mobile Crowdsensing","authors":"Tianjing Wang;Yu Zhang;Hang Shen;Guangwei Bai","doi":"10.1109/TCSS.2024.3398430","DOIUrl":null,"url":null,"abstract":"Deep reinforcement learning (DRL) has become prevalent for decision-making task assignments in mobile crowdsensing (MCS). However, when facing sensing scenarios with varying numbers of workers or task attributes, existing DRL-based task assignment schemes fail to generate matching policies continuously and are susceptible to environmental fluctuations. To overcome these issues, a twin-delayed deep stochastic policy gradient (TDDS) approach is presented for balanced and low-latency MCS task decomposition and parallel subtask allocation. A masked attention mechanism is incorporated into the policy network to enable TDDS to adapt to task-attribute and subtask variations. To enhance environmental adaptability, an off-policy DRL algorithm incorporating experience replay is developed to eliminate sample correlation during training. Gumbel-Softmax sampling is integrated into the twin-delayed deep deterministic policy gradient (TD3) to support discrete action space decisions and a customized reward strategy to reduce task completion delay and balance workloads. Extensive simulation results confirm that the proposed scheme outperforms mainstream DRL baselines in terms of environmental adaptability, task completion delay, and workload balancing.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"11 5","pages":"6580-6591"},"PeriodicalIF":4.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10550173/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep reinforcement learning (DRL) has become prevalent for decision-making task assignments in mobile crowdsensing (MCS). However, when facing sensing scenarios with varying numbers of workers or task attributes, existing DRL-based task assignment schemes fail to generate matching policies continuously and are susceptible to environmental fluctuations. To overcome these issues, a twin-delayed deep stochastic policy gradient (TDDS) approach is presented for balanced and low-latency MCS task decomposition and parallel subtask allocation. A masked attention mechanism is incorporated into the policy network to enable TDDS to adapt to task-attribute and subtask variations. To enhance environmental adaptability, an off-policy DRL algorithm incorporating experience replay is developed to eliminate sample correlation during training. Gumbel-Softmax sampling is integrated into the twin-delayed deep deterministic policy gradient (TD3) to support discrete action space decisions and a customized reward strategy to reduce task completion delay and balance workloads. Extensive simulation results confirm that the proposed scheme outperforms mainstream DRL baselines in terms of environmental adaptability, task completion delay, and workload balancing.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.