Dahye Jeong;Eunbeen Choi;Hyeongjin Ahn;Ester Martinez-Martin;Eunil Park;Angel P. del Pobil
{"title":"Multi-modal Authentication Model for Occluded Faces in a Challenging Environment","authors":"Dahye Jeong;Eunbeen Choi;Hyeongjin Ahn;Ester Martinez-Martin;Eunil Park;Angel P. del Pobil","doi":"10.1109/TETCI.2024.3390058","DOIUrl":null,"url":null,"abstract":"Authentication systems are crucial in the digital era, providing reliable protection of personal information. Most authentication systems rely on a single modality, such as the face, fingerprints, or password sensors. In the case of an authentication system based on a single modality, there is a problem in that the performance of the authentication is degraded when the information of the corresponding modality is covered. Especially, face identification does not work well due to the mask in a COVID-19 situation. In this paper, we focus on the multi-modality approach to improve the performance of occluded face identification. Multi-modal authentication systems are crucial in building a robust authentication system because they can compensate for the lack of modality in the uni-modal authentication system. In this light, we propose DemoID, a multi-modal authentication system based on face and voice for human identification in a challenging environment. Moreover, we build a demographic module to efficiently handle the demographic information of individual faces. The experimental results showed an accuracy of 99% when using all modalities and an overall improvement of 5.41%–10.77% relative to uni-modal face models. Furthermore, our model demonstrated the highest performance compared to existing multi-modal models and also showed promising results on the real-world dataset constructed for this study.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3463-3473"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10510608/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Authentication systems are crucial in the digital era, providing reliable protection of personal information. Most authentication systems rely on a single modality, such as the face, fingerprints, or password sensors. In the case of an authentication system based on a single modality, there is a problem in that the performance of the authentication is degraded when the information of the corresponding modality is covered. Especially, face identification does not work well due to the mask in a COVID-19 situation. In this paper, we focus on the multi-modality approach to improve the performance of occluded face identification. Multi-modal authentication systems are crucial in building a robust authentication system because they can compensate for the lack of modality in the uni-modal authentication system. In this light, we propose DemoID, a multi-modal authentication system based on face and voice for human identification in a challenging environment. Moreover, we build a demographic module to efficiently handle the demographic information of individual faces. The experimental results showed an accuracy of 99% when using all modalities and an overall improvement of 5.41%–10.77% relative to uni-modal face models. Furthermore, our model demonstrated the highest performance compared to existing multi-modal models and also showed promising results on the real-world dataset constructed for this study.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.