RayProNet: A Neural Point Field Framework for Radio Propagation Modeling in 3D Environments

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-09-18 DOI:10.1109/JMMCT.2024.3464373
Ge Cao;Zhen Peng
{"title":"RayProNet: A Neural Point Field Framework for Radio Propagation Modeling in 3D Environments","authors":"Ge Cao;Zhen Peng","doi":"10.1109/JMMCT.2024.3464373","DOIUrl":null,"url":null,"abstract":"The radio wave propagation channel is central to the performance of wireless communication systems. In this paper, we introduce a novel machine learning-empowered methodology for wireless channel modeling. The key ingredients include a point-cloud-based neural network and a Spherical Harmonics encoder with light probes. Our approach offers several significant advantages, including the flexibility to adjust antenna radiation patterns and transmitter/receiver locations, the capability to predict radio path loss maps, and the scalability of large-scale wireless scenes. As a result, it lays the groundwork for an end-to-end pipeline for network planning and deployment optimization. The proposed work is validated in various outdoor and indoor radio environments.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"330-340"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684152","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684152/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The radio wave propagation channel is central to the performance of wireless communication systems. In this paper, we introduce a novel machine learning-empowered methodology for wireless channel modeling. The key ingredients include a point-cloud-based neural network and a Spherical Harmonics encoder with light probes. Our approach offers several significant advantages, including the flexibility to adjust antenna radiation patterns and transmitter/receiver locations, the capability to predict radio path loss maps, and the scalability of large-scale wireless scenes. As a result, it lays the groundwork for an end-to-end pipeline for network planning and deployment optimization. The proposed work is validated in various outdoor and indoor radio environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RayProNet:用于三维环境中无线电传播建模的神经点场框架
无线电波传播信道是无线通信系统性能的核心。本文介绍了一种用于无线信道建模的新型机器学习方法。其关键要素包括基于点云的神经网络和带光探针的球谐波编码器。我们的方法具有几个显著优势,包括调整天线辐射模式和发射机/接收机位置的灵活性、预测无线电路径损耗图的能力以及大规模无线场景的可扩展性。因此,它为网络规划和部署优化的端到端管道奠定了基础。建议的工作在各种室外和室内无线电环境中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models Transfer Learning Based Rapid Design of Frequency and Dielectric Agile Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1